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Abstract 

We study competition in multi-echelon supply chains with a distributive structure. Firms in the supply 

chain are grouped into homogeneous sectors that contain identical firms with identical production 

capabilities that all produce exactly one undifferentiated product. Each sector may distribute its product 

to several different downstream sectors, and each sector is only supplied by a single upstream sector. 

The demand curves in final markets are assumed to be linear, as are the variable costs of production in 

all sectors. Competition is modeled via the Successive Cournot model in which firms choose production 

quantities for their downstream market so as to maximize their own profits, given prices for the input. 

Under these assumptions, equilibrium prices, quantities, and firm-level profits for any multi-echelon 

distributive network can be derived. We discuss the network transformation properties, and by using 

these properties, we examine the effect of demand parameter changes and cost changes on any firm’s 

equilibrium price, quantity, and profit. We also explore the effects of entry on the equilibrium solution.  

While the effects of upstream entry on downstream sectors are as expected, the effect of downstream 

entry on upstream sectors, and therefore on sectors in parallel (lateral) paths can be quite counter-

intuitive.    

 

Keywords: Distributed decision making; Successive Cournot competition; Supply chain management    

mailto:dmzhou@phbs.pku.edu.cn
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1 Introduction 

In many industries it is common to see multi-stage supply chains, in which different companies occupy 

different stages of the chain. The number of entrants at any level of a supply chain can vary quite 

substantially. Supply chains also exhibit considerable structural variation across industries. Basic goods 

and commodity products are often purchased by several distinct sectors. For example, steel is purchased 

by the automotive industry as well as by the construction industry. Goods can also be sold in more than 

one geographically distinct marketplace. Such examples display a distributive structure. In other cases, 

the supply network can have an assembly structure where many inputs may be required to assemble a 

product. Of course, both of these characteristics can also be present simultaneously. 

In this paper we address competition in multi-echelon distributive supply chains, a generalization of 

the serial chain model of Corbett and Karmarkar (2001). Firms are grouped into sectors where all firms 

within a sector are identical. Each sector produces exactly one product and uses exactly one input. A 

product may be purchased by many sectors. The resulting system can be pictured as a network which 

has a multi-echelon or arborescent structure in which each sector is represented by a node. Each node is 

supplied by a unique node, but may be a supplier to more than one node. The network representation of 

such distributive structure is sketched in Figure 1. 

 

Figure 1:  An Example of Distributive Network 

 

Examples of distributive network structures abound.  Perhaps the most obvious case is that of simple 

geographical distribution, where goods from a plant are sold in more than one region, with no cross-

selling across regions (due to distance and cost).  Distributive structures also occur in many process 

industries, where one product is used in more than one distinct “downstream” production process to 

make different products.  Examples include metals (steel, aluminum, copper), agricultural products 

(milk, wheat, corn), petro-chemicals (leading to a vast range of sectors including polymer plastics like 
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PVC and HDPE, fibers like polyester and chemicals like methanol, ethylene and olefins), and electronic 

components (like memory chips) going into different boards and products.   

Cement production provides a good example of a two-tier distributive network.  The first stage is the 

production of clinker from limestone.  At a second tier, clinker is ground, blended with fillers like slag, 

and packaged into the final product.  The grinding plants tend to be closer to market regions and so are 

geographically distributed, while clinkering must be done close to the sources of raw material (limestone 

and coal).  Grinding plant costs are an order of magnitude smaller than clinker plants, so that there can 

be many more entrants at the lower tier than at the upper.  In some regions, a third tier in this sector is 

distribution to retail locations, which happens in countries with many small contractors who buy cement 

locally. 

Changes in costs, concentration, technology, network structure, or demand can have both vertical 

and lateral effects in distributive systems.   For example, in the cement production, concentration 

decrease in one region due to entry of grinding plants might affect the price of clinker, and thus affect 

the production and profitability of grinding plants in another region, and the price of cement in that 

region. As another example, corn is used for producing gasohol, as well as starch, corn syrup, and 

hundreds of other foods, cosmetics and industrial products. An increased demand for gasohol might 

increase price and production of corn, and thus affect the behaviors of firms in sectors that is not directly 

linked with the gasohol industry.  In a distributive network, the magnitudes of the changes in any sector 

depend on many, perhaps all, other sectors.  Methods for understanding and estimating these changes, 

and for solving large problems, are not readily available. If multiple concurrent changes occur in these 

systems, it is not easy to assess the composite effects of those changes.   And in some cases, the changes 

can be counter-intuitive even in terms of direction. 

Our purpose is to study system-wide equilibrium behavior while considering vertical and horizontal 

interactions among sectors in the whole network as well as the competition between firms within each 

sector (node). We develop models of competition where each individual firm in each sector of a large 

multi-echelon distributive network acts as a decision maker optimizing its own profit. This model allows 

us to examine the impact of cost structure, network (distribution) structure and sector concentration on 

prices, quantities and profits. As in Corbett and Karmarkar (2001) we model competition using the 

Successive Cournot framework. We provide explicit expressions for equilibrium prices, quantities and 

firm-level profits. We construct network transformation methods that can compress networks to simpler 

forms, or expand them to particular (binary) forms. By using these transformation methods, we are able 

to analyze the impact of cost and demand parameters without having to deal with the complexity or 
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specific form of the network structure. Importantly, we are also able to study the effect concentration in 

any sector in the network on any other sector. These effects are in some cases quite non-intuitive. 

Conventional wisdom and earlier studies in the literature state that lower concentration ( a larger 

number of firms) in a market generally causes the total output of that market to increase, the consumer 

price to decrease, and each incumbent's profit to decrease (Seade 1980a). These results are indeed 

obtained in the serial and assembly cases, under assumptions similar to those of this paper. However, we 

find that for the distributive case, with the consideration of vertical and horizontal interactions, firm-

level profit for incumbents could increase or decrease with changes in concentration. This result is due 

to the combined effect of competition and upstream resource price changes. 

Although this paper adopts the same Successive Cournot Model to analyze the distributive structure 

as Corbett and Karmarkar (2001) for the serial case and Carr and Karmarkar (2005) for the assembly 

case, the equilibrium solution provides different insights from those existing papers.  In the distributive 

network, contrary to traditional wisdom, when sector concentration changes, the resource price could 

increase, decrease, or remains the same depending on the relative parameters of all the distributive 

sectors. Thus, profits and production of the incumbents could change in either direction, under the 

combined effects of resource prices and competition. This unique structure behavior is not seen in the 

serial and assembly structures analyzed in the previous papers.  Moreover, different from the serial case, 

vertical integration for distributive case can make the total profit of the integrator increase or decrease 

depending on the concentration level and cost parameters.    

We note that the (post-entry competition) model of this paper is a pre-requisite not only for entry 

decisions, but also for other types of analyses.  For example, a facility location decision in the context of 

a supply chain could use the post-entry production model to understand the consequences of alternative 

location choices.  Ho et al. (2004) study competitive location with a simpler imbedded one-tier Cournot 

model of production competition after location choice.  But in many sectors, for example cement, 

petrochemicals, or food processing, there are multiple tiers involved.  This more complex and realistic 

location problem remains to be investigated.  As another example, consider the consequences of process 

improvement at some stage in an industry to reduce variable costs.  The results of such changes can 

ripple to upstream, downstream and lateral sectors.  The tools to analyze such changes do not exist today.  

Vertical integration decisions can be analyzed in a manner similar to the example in Corbett and 

Karmarkar (2001) for the serial chain case.  In all these examples, the fast solution of the competitive 

model is a necessary pre-requisite. 

The distributive model can also be combined with the assembly model of Carr and Karmarkar (2004) 

to study more complex production networks.  However, this extension is not trivial, and the solution 
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approach may not be general, since it can depend on the specific structure of the network being 

considered.  

2 Literature 

Our analysis is in the tradition of the Successive Cournot oligopoly literature, though most previous 

research has been limited to the two tier serial case with only one or two entrants at each tier. In fact, the 

upstream tier is often taken to consist of a single (monopolist) firm. Furthermore, most of the existing 

literature is directed towards policy issues related to vertical integration and market foreclosure, often in 

a setting with the upstream monopolist integrating forward. Our approach is directed at the modeling, 

analysis and solution of general networks, in order to understand the implications for production 

decisions (quantities), the resulting prices, and the effects of changes in network structure, variable cost 

structure across the network, end demand, and concentration at network stages.   

Machlup and Taber (1960) present an early discussion of successive oligopoly and vertical 

integration. Greenhut and Ohta (1979) and Abiru (1988) show that vertical integration by a monopolist 

in the supplying sector, by and large leads to higher outputs and lower prices. The seeming paradox here 

is that a monopolist integrating forward, can drive out competitors from downstream markets, and yet 

social welfare can be increased. Essentially, this happens because vertical integration avoids double 

marginalization. Quan and Rogers (2004), follow an approach similar to Corbett and Karmarkar (2004) 

to examine a two-tier network of a telecommunications firm purchasing software tools from an upstream 

vendor; the firm then employs the tools to produce both a product (programmed queries) and services. 

Tyagi (1999) studies the effects of downstream entry in a two tier serial setting when the upstream 

tier consists of a monopolist and the downstream tier consists of identical firms. He finds that 

downstream entry could affect the (upstream) price charged to the downstream firms. Depending on the 

consumer demand functions, this change of upstream price could have negative or positive effect on the 

profits of downstream incumbents. This effect occurs for certain demand conditions, and cannot occur 

for linear demand in a serial chain. In this paper we show that it can occur in distributive chains even 

when the end market demand is linear, due to an entirely different mechanism that has to do with the 

distributive structure rather than with the shape of the end market demand curve. 

Other related economic literature includes Ziss's (1995) study of horizontal mergers within a setting 

of two tiers with two entrants in each tier, Vickers's (1995) study of regulation in serial chain 

competition and Seade's (1980) study on the effects of concentration and entry. As we have mentioned, 

none of these papers considers a network where there are multiple tiers of distributors or manufacturers, 

or a distributive structure.  
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Our paper is closest in methodology and spirit to Corbett and Karmarkar (2001) who study multi-tier 

serial supply chains. Also closely related is the paper by Carr and Karmarkar (2005) that analyzes multi-

echelon assembly networks. The distributive and assembly settings are complementary generalizations 

of the serial case. There are significant differences in the two generalizations that derive from the 

different underlying network structures.  In the assembly case, a key advance was in representing how 

quantity matching takes place across supplying sectors (corresponding to bill-of-materials relationships).  

In the distributive case, an important insight is that upstream firms have to strike a balance between 

multiple downstream sectors when discrimination is not possible. This compromise then has 

implications for the consequences of changes in parameters or structure.  

The ability to analyze the equilibrium behavior of general distributive networks distinguishes our 

paper from previous work, and as far as we are aware, this is the first paper to address this setting. 

3 The Two-tier Distributive Model 

In the two-tier case, there is a single upstream sector (consisting of several homogenous firms) and 

multiple sectors in the lower tier (each with several firms) as shown in Figure 2.   

 
Figure 2:  A Two-tier Case 

Firms at each downstream sector i face an independent consumer market, where the price and the 

aggregate production quantities are linearly related by pi = ai – biQi. Here, ai is the market reservation 

price, the supremum price at which demand will be positive. The other parameters bi is price sensitivity 

of the market. We also define : 1/i iB b  for convenience. 

We use the following notation: 

 vi,  the variable cost of production and distribution in sector i, i=0, 1,…, k. 

 ni,  (a positive integer), the number of firms in sector i. For convenience, we also use a parameter Ni 

defined by : / ( 1)i i iN n n  . 

 pi,  the common price charged by all firms in sector i to all downstream sectors. 

1 

P1=a1-b1Q1 P2=a2-b2Q2 Pk=ak-bkQk 

2 

0 

k … 
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 qi,  the quantity chosen by a single firm in sector i. As in a standard one sector Cournot model, all 

firms within a sector produce the same quantity at equilibrium, so the individual firms' production 

quantities can (at equilibrium) be expressed as qi = Qi /ni. 

πi,  the profit of a single firm in sector i.  

We assume that firms in each lower tier sector compete in the Cournot sense, and competition in the 

network follows the Successive Cournot framework (Machlup and Taber, 1960). That is to say, each 

firm in each lower tier sector chooses production quantity to maximize its profit, given a demand curve 

and a price for the input supplied by the upstream sector. For the upstream sector the aggregate quantity 

across all downstream (lower tier) sectors as a function of the resource price, establishes a demand curve 

for the resource supplying (upstream) sector. Firms in that sector compete in the Cournot sense by 

choosing quantities given this demand curve. Costs of resources or inputs at this sector are assumed to 

be exogenous to the model.  

We adopt the equilibrium criteria defined by Carr and Karmarkar (2005). For each sector:  

1. Given the demand curve faced by the sector and the resource price charged by the upstream sector, 

no firm in the sector has an incentive to unilaterally deviate from its production quantity.  

2. The aggregate quantity produced in every sector is balanced with the aggregate quantity of the 

required resource (i.e., markets clear). 

The optimal production quantities and equilibrium prices for this system are as follows. 

Proposition 1 The equilibrium prices, production quantities, and profits for the two-tier distributive 

network in figure 2 are  

0 0 0 0 0

0 0 0 0 0 0 0 0

2 2 2 2 2

0 0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

2
2 2

2

(1 )

( ) ( )

(1 ) / ( ) (1 ) ( )

[(1 ) ] [(1 ) ], 1...

( ) [ (1 )( )], 1...

(1 )
(1 )

i i i i i i

i i i i i i i i

i
i i i i

i i

p N a N v

Q B a p N B a v

N Q B N B N a v

p N N a N v N a N v i k

Q B a p N B a v v N a v i k

N
Q N B

B N





  

   

    

      

        


   2

0 0 0 0[ (1 )( )] , 1...i ia v v N a v i k     

 

 where 0

1.. 1..

: ( ) /i i i i i i

i k i k

a N B a v N B
 

    and  0

1..

: i i

i k

B N B


  . 

The proof is given in the Appendix.  An important property of this proposition is that the equilibrium 

price for the resource supplied by the upstream tier is related to the prices that would be charged in the 

perfect discrimination case, in a specific way.  Suppose that perfect discrimination were possible, i.e. 
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that in the Cournot setting the upper tier could determine the quantities supplied to each downstream 

sector (node) independently.  The system can then be decomposed into k separate serial systems.  Let p0j 

be the resource price in the j’th such system.  Then we have 

Corollary 1 The resource price p0 is a convex combination of the perfect discrimination prices p0j, 

j=1, ..., k:  

0 0

1.. 1..

/j j j i i

j k i k

p N B p N B
 

   .     (1) 

The proof is given in the Appendix.  The qualitative insight from this result is that the resource price in 

the distributive case is a compromise between the prices that could have been obtained from each 

downstream purchasing sector, under perfect discrimination.  So for example, the entry of another 

potential buyer of the resource will create a price shift, which could be in either direction, depending on 

the price and the weighting given to the new sector.  Note that the weights in the convex combination 

term depend on the Ns which are measures of the concentration of a sector, and on the Bs which are a 

measure of the price sensitivity of the imputed demand curve of the sector.  This result reveals the 

underlying forces of interaction among downstream sectors when affecting the resource price. However, 

it deserves to be mentioned that the detailed form of convex combination is highly related to the demand 

linearity, without which it would be hard to derive a simple form of decomposition.  

4 The Multi-tier Distributive Network and Structural Properties 

We now consider general distributive supply networks as exemplified by Figure 1.  We restrict attention 

to situations in which the aggregate production quantity along each arc of a given network is strictly 

positive at equilibrium. This assumption can be formally expressed as equilibrium condition, which, 

together with the demand linearity, guarantees the uniqueness of the equilibrium solution.     

The arborescent structure of distributive networks implies that each network has a single root sector.  

We label the sectors of network top down with the root sector as sector 1. For each sector i (node i), we 

define: 

Di as the set of all the sectors downstream of sector i. For example, in figure 1, D1 = {2, 3, 4, 5, 6} 

and D4 = {5, 6}. 

 Si as the set of sectors immediately downstream of sector i. In figure 1, S1 = {2, 3, 4}. 

 φi,s as the set of sectors along (i, s), the path from sector i to sector s. In figure 1, path (1, 5) is the 

path from sector 1, through sector 4, to sector 5; and φ1,5 = {1, 4, 5}. 

Proposition 2  For a given distributive network, the derived demand curve for any upstream sector i is   
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, or ( ),i i i i i i i ip a bQ Q B a p         (2) 

where the parameters Bi, ai, and bi are computed iteratively tier by tier as 

( )1
,  ,  and  .i

i

i i

s S s s s s

i s s i is S
s S s Ss s s s

N B a v
B N B b a

N B N B




 


  

 
  

The proof is similar to the proof for Proposition 1 and is omitted here.  The expressions in (2) 

provide some interesting properties of the derived demand curves seen by upstream sectors. As in the 

serial supply chain case (Corbett and Karmarkar, 2001), B decreases going upstream. That is to say, the 

quantities demanded at upstream sectors are less sensitive to upstream price than sectors which are 

closer to the markets. Note also that the reservation price ia  seen by a tier i is equal to the weighted 

average of the reservation prices along i's downstream arcs, ,s s ia v s S  . In the extreme case when 

s sa v is the same along each branch,  ia  equals s sa v . In such situations, ia  does not change with sB  

or sN . This property is crucial for our later discussion of the effect of downstream entry to the prices 

and profits in upstream sectors. 

Using Proposition 2, we can iteratively derive the demand curve for each sector, starting from the 

sectors facing final consumers. From these curves, the equilibrium price condition for each sector can be 

derived. All the price conditions together comprise a system of independent linear equations, which is 

solvable. The equilibrium quantities are then derived by substituting the prices back into demand curves. 

This solution method can be conveniently expressed in matrix notation, as given in the following 

proposition. 

Proposition 3  Equilibrium prices of sectors in a distributive network are the solution to  

T p R   

where p  is the vector of prices (one element per sector), R is a column vector (one element per sector) 

with each element (1 ) ,i i i i iR N a N v    and T is a lower triangular matrix, populated with element 

1 if 

 if .

0 otherwise

ij i j

i j

T N i S




  



 

The proof is omitted as it follows from the above discussion.  Note that T can be inverted to give T
-1

 

with elements 
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1

,

1 if 

/  if 

0 otherwise.

ij j i j j

i j

T N N i D




 



 

where Nj,i is defined as 
,

, :
j i

j i ss
N N


 . Applying T -1 gives the following result. 

Proposition 4   At equilibrium, the price of sector i in a distributive network is 

1,

,( / )[(1 ) ],

i

i j i j j j j j

j

p N N N a N v


       (3) 

where Nj,i is defined as 
,

, :
j i

j i ss
N N


 . 

T is a structure matrix that captures the relationship between the structural features of a 

distributive network (i.e., the sector connections, concentrations, and demand functions) and 

the equilibrium competition prices.  This proposition provides an explicit form for the 

equilibrium prices for a given network. Equlibrium quantities and profits can then be derived 

accordingly. Note that although the price of sector i, pi in (3) depends only on parameters of 

sectors on the upstream of sector i, those parameters are derived from parameters of all their 

downstream sectors, as shown in Proposition 2. Therefore, the equilibrium price of one sector i, 

pi, is the result of interaction of all sectors in the whole network.  

The main purpose of the current research is to analyze the equilibrium changes as a result 

of cost parameters and sector concentration changes for any given distributive network. This 

goal, however, cannot be easily reached by directly taking first order differentiation of the 

equilibrium results derived from Proposition 3 and 4, due to the intertwine of parameters 

across a general complex distributive network. We now construct network transformation 

methods using some structural properties of the distributive network. Through these 

transformation methods, we can discuss the comparative statics with cost and sector 

concentration changes without having to deal with the general structure any more. 

The structural properties are quite similar to the assembly network discussed in Carr and 

Karmarkar (2005).  As in Carr and Karmarkar (2005), we regard two sub-networks or two sets 

of nodes as equivalent with respect to the rest of the network if, after substituting one network 

(set of nodes) for the other, the rest of the network has the same equilibrium prices, quantities, 

and firm-level profits. Noting that a subnetwork essentially communicates to the rest of the 
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network through the demand curve that is provided to the subnetwork's root node, this means 

that two sub-networks are equivalent when they show the same demand curve to the rest of 

the network.  

Using this concept, distributive network has the features of expandable and compressible, 

similar to the assemble network shown in Carr and Karmarkar (2005).  As illustrated by Figure 

3, a network (a) can be expanded to a network (b) without affect any existing sectors’ 

equilibrium results.  Sector D is a dummy sector with 1dN   and 0dv  .  Figure 4 shows that 

sector 1 firms are unaffected if sector 2 and 3 are compressed into a simple demand curve.     

 

Figure 3:  Network Expandability 

 

 

Figure 4: Network Compressibility 
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Turning to comparative statics, we now consider the sensitivity of a sector's equilibrium 

prices, profits, and quantities to other sectors' parameters where i will be the sector at which a 

change occurs, and we consider how this affects another sector s. 

 

Proposition 5   Suppose s is any sector not upstream of sector i, and let u be the first node encountered 

that is upstream of both i and s. Then, a parameter change at i is completely communicated to sector s 

through pu. That is, at equilibrium, ps increases iff pu increases (as a result of the change at i) and, 

equivalently, πs decreases iff pu increases. 

The proof is omitted.  Using this proposition together with compressibility and 

expansibility allows us to analyze the effect of parametric changes very simply. We only need 

to examine the sectors along the path  (1, )i  to discuss the effects of parameter changes in sector 

i.  Using the compressibility property, the rest of the network can be compressed to single 

sectors without changing the equilibrium solution to the network. Therefore, the general 

multi-tier distributive network can be compressed to a simple binary tree as shown in Figure 

5(b). In the following discussion, we focus on the equilibrium prices, quantities, and profits of 

the sectors along the path (1, )i  in the binary structure shown in Figure 5(b). The other sectors 

are distinguished by a prime ( ' ). In the figure, we assume the market parameters (a s and B s) 

of the leaf sectors (sector i’, i-1’,..., 2’ and sector i) are given. 

 

Figure 5: Convert a Distributive Network into a Binary Tree 

The following proposition shows how vi influences equilibrium prices and profits in each 

sector along the path (1, i). 
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Proposition 6 (Illustrated by Figure 5(b).)  Suppose that vi, the variable production cost in sector i, 

increases. At equilibrium: 

1)  pi increases, Qi  and πi decrease. 

2) If sector j is upstream of i ( 1,ij  ), then pj, Qj, and  πj decrease. 

3) If sector j is downstream of i then pj increases; Qj and πj decrease. 

4) Otherwise (i.e., j is a lateral sector that links with sector i through the same resource sector) pj 

decreases; Qj and πj increase. 

The effects of changes in vi are intuitive in that increased production cost for firms in a 

sector increases selling prices and lowers profits. It also decreases the prices and firm-level 

profits of upstream sectors in the whole supply chain, which means the cost increase is passed 

along the supply chain eventually resulting in lower prices, lower production, and lower profit 

margins for all upstream sectors. Interestingly, however, for the lateral sectors in the network 

that are not upstream nor downstream of sector i, cost increase in sector i causes the resource 

price of the connecting node to decrease, and thus causes the firms in those sectors to be more 

profitable.  

 

Proposition 7   Suppose that ai increases (at a sector i supplying a consumer market). At equilibrium: 

1)  Qi, pi, and πi  all increase. 

2) If sector j is upstream of i then Qj, pj, and πj all increase. 

3) If sector j is not upstream of i then pj increases, Qj and πj decrease. 

So, increased profit margins can be passed upstream along the chain, causing prices to 

increase in resource markets and profits to increase in upstream firms. However, to firms in 

the "substitute channels" of the network, an increase in ai has negative effects: their prices 

increase and profits decrease as a result of the change. 

5. The Effects of Sector Concentration 

 

The dependence of equilibrium outputs, prices and profits on industry concentration is a 

fundamental issue in economic analysis. Conventional wisdom holds that with lower 

concentration (more firms), industry price ought to decline and per firm output and profit 

ought to decrease.  In single tier Cournot competition, this claim holds for most general 
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demand conditions.  In multi-tier networks, we might expect that lower concentration in a 

lower tier would lead to higher market power and higher profits in an upper (supplying) tier.  

However, these expectations may be violated in distributive networks. The following 

discussion shows that even with linear demand there exists a range of demand conditions for 

which an increase in the number of firms in a sector (lower concentration) increases the profits 

of the sector's existing firms and decreases the profits of upstream firms. This surprising result 

occurs when entry decreases the potential upstream market, and causes the upstream price to 

decrease; this then permits the profit margin of the downstream firms to increase. If the effect 

of upstream price outweighs the effect of increased competition due to the entry, the 

incumbents' profits in the sector with entry can go up.  We note that this seemingly perverse 

effect is not necessarily a common phenomenon.  It occurs for certain parameter ranges, and 

can disappear with further entry.  However, what it underlines is that the distributive 

structure has characteristics which are specific to that structure, and which lead to 

consequences not seen in the pure serial and assembly cases. 

In the following discussion of entry effects, we start with two-tier case to derive explicit 

results. Then, we extend the analysis to the multi-tier case and show that certain properties 

generalize simply while other effects can be more complex. The following proposition 

summarizes the effects of sector concentration on equilibrium prices, outputs, and profits for 

two-tier networks. 

 

Figure 6: Effect of Increases in N2 on p1 and π1 

  

Proposition 8   The effects of concentration changes (entry or exit) in the two-tier network of Figure 4(a) 

are: 

1) An increase (decrease) in n1 and N1 causes p1,  p2, π1 to decrease (increase), and causes Q1, Q2, π2 to 

increase (decrease). 
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2) An increase (decrease) of N2 due to entry (exit) in that downstream sector causes p2 to decrease 

(increase). 

3) However, with an increase of N2, p1 and π1 could increase, decrease or remain constant depending on 

the relative demand parameters (as shown in Figure 6): 

 For  p1: if  a2 – v2 > a1 (i.e.,  a2 – v2 > a3 – v3),  p1 increases with N2; if  a2 – v2 = a1 (i.e.,  a2 – v2 = a3 – 

v3),  p1 remains constant; if  a2 – v2 < a1 (i.e.,  a2 – v2 < a3 – v3), p1 decreases with N2. 

 For π1: if  a2 – v2 – v1>(a1 – v1)/2,  π1 increases with N2; if a2 – v2 – v1=(a1 – v1)/2,  π1 remains constant; 

if  a2 – v2 – v1<(a1 – v1)/2,  π1 decreases with N2.  a2 – v2 – v1 is always greater than (1-N1)(a1 – v1)  and 

smaller than  (a1 – v1)(1+N1N3B3/(N2B2)) due to the regularity condition. 

4) Moreover, π2 could increase, decrease, or remain constant with the increase of N2. Specifically 

1 2 2
2 2 1 1 1 1

1 2 2 1 2 2

(1 )
if   (1 )( ),

(1 ) (1 )

B N B
a v v N a v

B N B N N B

 
    

   
   (4) 

π2 increases with N2. Otherwise, π2 decreases with N2 (or remains constant when the above expression 

holds with equality) .   

Parts 1) and 2) of Proposition 8 state that lower concentration or an increased number of 

firms in a sector, leads to lower prices in the sector. More interesting and quite counter-

intuitive findings are the effects of N2 on p1, π1, and π2 as stated in parts 3) and 4) of Proposition 

8. Contrary to conventional wisdom, reduced concentration (entry) in a downstream sector can 

cause the resource price charged by the upstream suppliers to go up under certain demand 

and cost conditions. Moreover, for a certain range of demand parameters, the profit of 

upstream suppliers could go down as a result of the downstream entry. Similarly, incumbents 

in the same sector (sector 2 in our analysis) could see profits increase.  

The last phenomenon is not pervasive.  It only happens when the effect of resource price 

decrease overwhelms the effect of competition. Furthermore, notice that the right hand side of 

the inequality condition (4) monotonically decreases in N2.  With continued entry in sector 2, 

the anomalous effect goes away.  However, it illustrates a characteristic of distributive systems.  

The underlying reason for these effects is the nature of upstream resource price, which as 

shown in Proposition 2, is a compromise between the resource prices that would be seen with 

perfect discrimination. The weight of the balance is controlled by the concentration (Ni).  For a 

sector in which the resource price under perfect discrimination is higher, entry intensifies the 

weight, and makes the equilibrium resource price higher, and vice versa.  
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To examine the effect of concentration changes at a sector i in a multi-tier network, we only 

need to focus on the behavior of sectors along the path (1, i). We note that, the reservation 

prices for upstream sectors aj (1≤ j ≤ i) play a key role in the changes of prices, outputs and 

firm-level profits. In the following proposition, we summarize the direction of change of aj 

with respect to Ni.  

Proposition 9   The direction of change of the market reservation price aj at sector j, 1,ij  ,  with 

respect to Ni can be captured by its first derivative as  

1, 1

1,( )
j i ij

i j i j

i j

N Ba
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N B
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


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
 

 where 1
11, 1

i
s jj i sN N
     (if  j=i−1,  1, 1 1j iN     ) and 11,

i
s jj i sv v    . 

Thus the reservation price for an upstream sector increases, decreases, or remains the same 

depending on the relative value of the reservation prices along the channel where entry occurs 

and the reservation price of the market, which is the weighted average value of each 

downstream channel as discussed earlier. This result, which is different from the cases in serial 

chains (Corbett and Karmarkar, 2001) or assembly networks (Carr and Karmarkar, 2005), 

enables us to examine the price changes of any sector with the change of Ni. 

Proposition 10   In a multi-echelon distributive network, the price at tier i, pi, decreases monotonically 

with Ni. 

Using (3), pj, the price charged by the upstream sectors j, can be expressed as  
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Since each individual "a" is a function of Ni, the directive of pj to Ni can be expressed as 
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Next, profit of sector j can be expressed as  

2 2

1(1 ) ( ) ,j j j j j jB N a v p      

and the first differentiation then gives  
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We can thus see that upstream market price and profit could decrease, increase or remain 

constant with downstream entry. Furthermore, the trends in these strategic variables can be 

even more complicated since they depend on the changes of any upper tier's reservation price 

and equilibrium price. For example, a sector's price could increase even when the sector's 

reservation price decreases. 

6. Vertical Integration in Distributive Networks 

Vertical integration abounds in industries with distributive structure. It is commonly seen in 

cement industry that clinker plants supply both grinding plants that are integrated with them, 

and independent grinding plants. Most of the PC manufacturers, such as Dell and HP, bundle 

monitors with their computers, as well as selling them separately through retail channels.  

 

Figure 7: Vertical Integration 

The explicit form of equilibrium solution for the distributive networks shown in 

Proposition 2, 3, and 4 makes it possible to examine the effect of vertical integration in the 

post-entry game.  Corbett and Karmarkar (2001) have examined vertical integration in two tier 

serial networks, assuming that the numbers of firms in both tiers are the same, to permit 

comparison of the integrated and un-integrated cases.  They find that when each tier has a 

single firm (monopoly), integration results in higher profits.  However, when there are two or 

more firms in each tier, then the total profits of the network decline. 
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In the distributive case, there are many more structural alternatives that might be 

considered with respect to integration – too many to really consider all.  However, as in the 

serial case, the modeling approach developed here allows for any specific case to be analyzed.  

What is more, the distributive structure leads to phenomena which do not occur in the serial 

case.  Consider a sector that supplies two downstream sectors (Figure 7).  We can then have a 

situation where the upstream sector might integrate forward with one of the downstream 

sectors but not the other.  As in the serial case, we can look at what happens relative to that 

downstream market.  However, here there will also be lateral effects on the other downstream 

sector.  Recalling the result of proposition 2, one can see that after integration, the upstream 

sector will no longer have to balance the downstream sectors in its pricing decisions, and will 

take different action with respect to the second (unintegrated) sector.  From the point of 

profitability, the upstream sector will see two sources of profit changes: that from integrating 

forward, and that from changing its actions with respect to the second downstream sector.  In 

turn, the second un-integrated downstream sector may see either an increase or a decrease in 

resource price and therefore its profits could either go up or down.  The latter (lateral) effect is 

of course a characteristic of distributive network structure. 

Proposition 11   Assume there are same number of firms in sector 1 and 2 in the two-tier, three-sector 

case (as in Figure 7).  Vertical integration of sector 1 and sector 2 always causes Q2 to increase.  

Moreover, if a2 – v2 > a3 – v3, the resource price p1 decreases; if a2 – v2 = a3 – v3, p1 remains unchanged; 

and if a2 – v2 < a3 – v3, p1 increases. Q3 and π3 increase (decrease) iff p1 increases (decreases). Finally, 

the total profit of the integrated firms, π1+π2, increases when n2=1; otherwise, when n2>1, π1+π2 could 

increase or decrease, depending on the relative value of a2 – v2 and a3 – v3.  

In the case where there are more than two downstream sectors, integration of the upper tier 

with one of the downstream sectors can lead to a wide range of possible outcomes, depending 

on the specifics of the system. 

7.  Conclusions 

In this paper, we have analyzed competition in pure distributive multi-echelon supply 

networks, using the Successive Cournot model for oligopolistic competition with multiple tiers. 

We developed explicit expressions for equilibrium prices and quantities as the solutions to a 
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set of linear equations that can be derived from the structure of the network. The equilibrium 

solution is obtained in two steps: 1) Iteratively calculate all the upstream markets' demand 

parameters; 2) Solve a system of linear equations that involve the demand parameters. We 

demonstrated certain network transformation principles that allow a network to be 

compressed or to be expanded to a binary tree structure. These transformations make it 

straightforward to examine the effects of parametric changes on the equilibrium solution to 

any distributive network. 

Finally, we present some comparative statics results and discuss the effects of entry on 

equilibrium prices, quantities and firm-level profits. Changes in the variable costs of 

production have expected effects, as do changes in demand parameters. However, the effects 

of changes in sector concentration are not as obvious. If the number of firms in a sector 

increases, the quantity produced in the sector increases and price charged by firms in the 

sector decreases. Downstream effects are also as expected. However, the upstream 

consequences are more complicated in that whether upstream prices increase or decrease 

depends on the demand conditions of the sector where the entry occurs relative to parallel 

paths. If entry occurs along the channel with less than the average reservation price of the 

upstream market, the upstream price could decrease rather than increase. With certain 

demand conditions, the decreased resource price provides a larger profit margin for 

downstream incumbents and this positive impact on profits can outweigh the competition 

effect due to entry and thus cause equilibrium profits to increase with entry. Decreased prices 

in upstream can also cause upstream firms to profit less (although for the two-tier case with a 

monopoly supplier in the upstream tier, upstream profits always increase with downstream 

entry). For those firms not along the path between the root sector and the sector with entry, 

their equilibrium prices, quantities, and profits change according to the change in the price of 

the connecting node i.e. the sector that connects the firms with the path in question. Thus, we 

see that some existing intuitions, largely derived either from serial supply chains or from 

models with a single competitive sector, do not all survive the extension to more complex 

distributive networks. 

The present analysis not only provides results for general distributive supply chains, but 

also suggests directions for the analysis of other network structures. In ongoing research, we 
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are investigating the analysis of acyclic multi-echelon networks that have a mix of assembly, 

distributive, and non-arborescent network topologies. The eventual target of this stream of 

research is to provide robust techniques to analyze competition in general supply chains and 

networks with general structures. 
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Appendix 
 

Proof of Proposition 1 

Starting with sector i of the downstream tier, the first equilibrium criterion means that each firm in 

the sector selects a production quantity qi that maximizes its profits given that the firms in the sector 
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purchase products at a cost of p0 and incur a variable cost vi for every unit produced.  A single firm thus 

seeks to maximize revenue of qi(pi-p0-vi), where pi equals ai-biQi. Differentiation gives us the firm's first 

order optimality condition which is to select quantity that solves 

0( ) / 2 / 2i i i i iq B a v p Q    ,   i =1,…, k 

where Q-i is the aggregate quantity produced by all the other firms in sector i. The production decision of 

each firm in sector i follows this same condition as well due to the identical cost structure of all firms in 

the sector. This gives us a system of ni independent linear equations for each sector i. A symmetric 

solution can be calculated in which every firm produces quantity is 

0( ) / ( 1)i i i i iq B a v p n    ,   i =1,…, k 

and the entire sector produces an aggregate quantity, 

0( )i i i i i i iQ n q N B a v p    ,   i =1,…, k    (A1) 

We now substitute (A1) into sector i's demand curve to get the sector i equilibrium price condition 

0(1 ) ( )i i i i ip N a N v p    ,   i =1,…, k    (A2) 

Next we look at the supplier tier, sector 0. Our second equilibrium criterion requires the supply and 

demand quantities to be balanced, so the aggregate quantity produced at sector 0 should be equal to the 

aggregate equilibrium quantities in each of its distributive downstream sector, i.e., 0 1 ... kQ Q Q   . 

Taking in the equilibrium aggregate quantity Qi from (A1), we can derive the demand curve for sector 0 

firms as 
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Now analyzing the production decisions for sector 0 firms gives the equilibrium production 

quantities as 

0 0 0 0 0

0 0 0 0 0 0 0

(1 ) ( ),

( ).

q N B a v

Q n q N B a v

  
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Also, we can derive the sector 0 equilibrium price as 

0 0 0 0 0(1 ) .p N a N v         (A3) 

Equations (A2) and (A3) taken together are a system of independent linear equations, and can be easily 

solved to get the equilibrium prices (p0 is already the equilibrium price), 

0 0 0 0[(1 ) ] [(1 ) ], 1...i i i i i ip N N a N v N a N v i k       . 
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Furthermore, substituting these prices into the relevant demand curves gives the equilibrium aggregate 

production quantity for each sector. Firm level profits can then be derived by substituting back the 

optimal prices and quantities. Q.E.D. 

 

Proof of Proposition 2 

From proposition 1, 0 0 0 0 0(1 )j jp N a N v   , where 0 :j j ja a v  . Thus, (1) can be derived. 

Proof of Proposition 6 

We know for the distributive network in figure 5(b), the prices and profits of each individual firm in 

sector j (1≤ j≤ i) are: 
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Moreover, it is straightforward to derive the following expression, 

1,/ / ,    for [1, 1]j i j i i ja v N B B j i      .    

To prove 1), note that 
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we only need to show that ∂pi-1/∂vi > -1. This can be done by induction. First, for sector 1, 
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Assume the condition holds for sector i-2. Then, for sector i-1, we have 

 

-1 -1 -1 -1 -2

1 ' '
1 -1 1

' '

/  (1 )( / ) ( / )

(1 ) / 1.

i i i i i i i i

i i i i i
i i i i i

i i i i

p v N a v N p v

N B N N B
N N B B N

N B N B


 

        


       



 

Thus, (1) is proved. 

Now we use induction to establish (2). Starting from sector 1, we can derive the first derivatives 

with respect to vi as 
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Assuming these properties hold for sector j-1, we have the following expressions for pj, Qj, and πj, 



 23 

1

1 1 2

1 1

, 1 , 1 2

1

1

(1 ) 0

( ) [ (1 ) ]

[ ( ) ( )].

j j j

j j

i i i

j j j j j j

j j j j j j

i i i i i i

i j i i j i j j

j j j

j j i i

p a p
N N

v v v

Q a p a a p
B N B N N N

v v v v v v

N B N B a p
B N N

B B v v



  

 

  





  
   

  

     
     

     

 
    

 

 

Since , 1 , 1/ / ,i j i j i j i jN B B N B B   we have / 0j iQ v   . 

As to the profits of sector j, 
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Thus (2) is proved.  It is straightforward to derive (3) and (4) from (2) and proposition 5.  Q.E.D. 

 

Proof of Proposition 7 

The proof is analogously similar to proposition 6, and is omitted here.  

 

Proof of Proposition 8 

1) For the three-sector two-tier network of figure 4(a), according to proposition 1, the price 

and profit of each individual firm in sector 1 and 2 are given by:  
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Treating N1 as a continuous variable and taking the first derivative of these expressions with 

respect to N1, we can easily show 1). 

 2) Differentiating p2 with respect to N2, we get 
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Due to the regularity condition, Q1 > 0, Q 2 > 0, and Q 3 > 0. Taking Q 1, Q 2, and Q 3 from 
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proposition1 and simplifying the expressions, we have  
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 Therefore, 
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3) To show the effect of N2 on p1, we take the first derivative of p1 with respect to N2 as  

3 2 31 1
1 1 2 2 3 32

2 2 1

(1 ) (1 ) [( ) ( )]
N B Bp a

N N a v a v
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 
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 
. 

Thus, if  a2 – v2 > a3 – v3, 1 2/ 0p N   ; a2 – v2 < a3 – v3, 1 2/ 0p N   ; a2 – v2 = a3 – v3, 1 2/ 0p N   .   

To show the effect of N2 on 1 , we have  
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Therefore, if a2 – v2 – v1 < (a1 – v1) / 2, 1 2/ N  is negative, i.e., π1 decreases with N2.  If a2 – v2 – 

v1 > (a1 – v1) / 2, π1 increase with N2. 

4) To show the effect of N2 on 2 , we take the first derivative of 2 with respect to N2,   
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where X is defined as 
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Notice that  2 1 2 1[1 (1 )(1 ) / ]N N B B     is always smaller than  2 2 1[1 (1 ) / ]N B B   . Therefore, if 

2 2 1a v v   is very close to its lower bound 1 1 1(1 )( )N a v  , X could be negative, which means 

2/ 0N   . More specifically,  
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2 decreases with N2. Otherwise, 2  increases with N2.  Q.E.D. 

 

Proof of Proposition 9 

Applying proposition 3 iteratively along the path (j, i) gives 
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where 11, : s
k jj s kv N    .  In aj, only Nj+1, i and Bj change with the increase of Ni and all the other 

parameters remain constant. Therefore, 
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where Nj+1, i-1 = 1, if j = i -1.   Q.E.D. 
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Proof of Proposition 10 

As in (3), 1 1, [(1 ) ]i
ri r i r r r rp N N a N v    .  Note both Nr+1, i and ar change with Ni.  Taking 

first derivative of pi with respect to Ni and applying (4) give 
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This can be further simplified as  
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To prove that pi decreases with Ni, we only need to show that /i ip N  is always negative. 

We do this in two steps: 1) we construct a series of upper bounds Ui, Ui-1, …, U2, and show that 

/i ip N  is smaller than Ui; 2) we show that Ui < Ui-1 <, …,< U2 < 0. 

First, we develop a few inequalities used in the relaxation.  According to the regularity 

condition, for a feasible distributive network, Q1, Q2, …, Qi are strictly positive. Thus we have 
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which gives us the following inequality, 
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Similarly,  
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            (A5) 

 It deserves to be mentioned that the above inequalities hold only when ar – v1,r > 0, which 

is true for the distributive network to be feasible.  
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Moreover, since for any sector r > 1, 1r r r r r r rB N B N B N B     , we can derive the following 

inequalities:  
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1). Using (A5), we relax /i ip N  by eliminate 1,i ia v term in (A4) to reach its upper bound 

Ui.  In general, the upper bound is constructed as  [2, ]j i   ,  
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where we define Nk,k+1 = 1. For j = i,  
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Now, we need to prove /i ip N   is bounded by Ui. By combining the 1,i ia v terms in (A4), 

/i ip N  can be further expressed as  
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The coefficient of 1,i ia v  in (A7) is  
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  (A8) 

where all the inequalities come from (A6).  Therefore, we can relax (A7) using (A5) as  
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2).We use induction to show that Uj increases as j decreases. 

i).We prove Ui < Ui-1.  Separating 1 1, 1i ia v   term in Ui provides 
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negative. Thus, relaxing it using (A5) gives   
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where the equality comes from collecting and simplifying the 1,r ra v  terms. 

ii). We prove Uj < Uj-1 for 2 j i  . Separating 1 1, 1j ja v   term in Uj provides  
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we have 
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Now, if we can show U2 < 0, the proof is completed.  
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Proof of Proposition 11 

First, from proposition 1, before integration, Q2 is 2 2 2 2 1 1 1 1[ (1 )( )]N B a v v N a v     . After 

integration, it is easy to show that Q2 is 2 2 2 2 1[ ]N B a v v  , and thus, Q2 always increases with 

integration. Similarly, p1 changes from 1 1 1 1(1 )N a N v   to 1 3 3 1 1(1 )( )N a v N v   ,where 

1 2 2 2 2 3 3 3 3 2 2 3 3[ ( ) ( )] / ( )a N B a v N B a v N B N B     .  Therefore, if a2 – v2 > a3 – v3, the resource price p1 

decreases; if a2 – v2 = a3 – v3, p1 remains unchanged; and if a2 – v2 < a3 – v3,  p1 increases. Q3 and π3 

increase (decrease) iff p1 increases (decreases). 

As to the profit π1 + π2, before the integration,  

2 2 2

1 2 2 2 2 3 3 1 1 2 2 2 1 2 1 1(1 ) [( )( ) ( (1 )( )) ]N B N B N a v B a v v N a v            . 

After the integration, it changes to 
2 2 2

joint 2 3 3 3 3 1 2 2 2 1(1 ) [ ( ) ( ) ]N B N a v v B a v v        . Define 

2 2 1 3 3 1( ) / ( )a v v a v v     as x.  After collect terms, we have 
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where 2

2 2 2 2 2 2 3 3 2: (1 ) (2 3 )B N B N N N B N N        ,
3

3 3 3 3 2 2 3 2 3: 2 ( 2 )B N B N B N B N N    , and 

2 2

3 3 2 2 3 2 3 3 3 3 2 3: ( 3 )B N B N B N N B N B N N     .  
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Note that when 2 21 ( . . 0.5)n i e N  , we have >0 and
2

2 3 34 / 4 0B B N     .Therefore, for any 

x, 0  .  When 2 22 ( . . 2 / 3)n i e N  , we have <0 and  

2 2 2 2

3 3 2 2 2 2 3 3 24 4 [ ( 1) (1 2 ) ] 0B N B N N N B N N        . 

Therefore   could be either positive or negative, depending on the relative value of 

2 2 1 3 3 1( ) / ( )a v v a v v    . Q.E.D. 
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