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Abstract Detecting and predicting financial bubbles have become crucially
important because of the economic significance of endogenous market crashes.
In this paper, we provide an algorithm to predict the distribution of the critical
times of financial bubbles by means of a log-periodic power law. Our approach
consists of a price gyration algorithm, which uses different window sizes for
peak detection and a distance-based weighting approach for peak selection, and
a constrained genetic algorithm. Our results show a significant improvement in
the prediction of bubbles’ critical times. The diagnostic analysis demonstrates
the accuracy, efficiency and stability of our predictions.

Keywords Critical time · Bubbles · Log-periodic power law · Econophysics

1 Introduction

Financial crises tend to follow asset price bubbles observed in various markets
throughout history. Although there is no consensus on the definition of bub-
bles, a notion that a bubble is a large, sustained deviation of asset price from
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its fundamental value, prevails in academic research. Skewed asset prices fail
to reflect the fundamentals well, thus in turn it may have an important effect
on the resource allocations (Stiglitz 1990). Moreover, the bursting of a bubble,
e.g. a dramatic collapse of the stock market, may bring the economy into even
worse situation, such as the great recession and dysfunction in the financial
system, which proves the importance to understand the asset price bubbles.

Given the mispricing of assets underscores the weakness of present-value
models, more attention is given to introducing bubbles to asset pricing models.
Predominantly, two streams of theoretical frameworks shed lights on this issue:
rational models as well as behavioral models, which assume irrational behavior
for at least one group of agents (Sherbina and Schlusche 2012). The rational
models bound all the agents to be rational, however, the bubbles may still exist
due to market imperfection like information asymmetry and sale constraints
(Allen et al. 1992). As a different view, the behavioral models generate bubbles
by various irrationality of market players (Miller 1977; Barberis et al. 1998;
Daniel et al. 1998; Shiller 2002). Given some empirical evidence which support
the validation for detecting bubbles of these models, however, none of them
provide the space for predicting the critical time of financial bubbles with
substantial significance.

As an alternative to explain bubbles, a framework called Log-periodic
power law (LPPL) model originating in statistical physics gained a lot of atten-
tion because of many successful predictions (Johansen et al. 2000; Clark 2004;
Filimonov and Sornette 2011). Besides its good performance in empirical stud-
ies, the theoretical contribution cannot be neglected. Johansen et al. (2000)
reconcile the rational models and the behavioral models by (i) a macro-level
setting with rational expectation hypothesis and (ii) a microscopic modelling
where traders imitate their nearest neighbors irrationally. Implicit in this de-
scription is that individuals may make sub-optimal choice but the aggregate
effect of expectation leads to rational expected determination. The tendency
of the micro-level imitation, in other words herding behavior, increases up to
a certain point called critical time, through which LPPL predicts the crash
dates.

The empirical literature has employed a variety of approaches to estimat-
ing LPPL models. Johansen et al. (2000) first used taboo search and the
Levenberg–Marquardt algorithm (LMA) to deduce an evolution law for stock
prices before the crash in the United States and Hong Kong. Johansen and
Sornette (2001) identified and analyzed 21 significant bubbles followed by large
crashes or severe corrections, and found that the LPPL adequately described
speculative bubbles in emerging markets. Liberatore (2011) introduced a price
gyration method combined with the LMA to predict the critical time of finan-
cial bubbles for the DJIA and S&P 500. Pele (2012) proposed an extension of
the approach of Liberatore (2011), with added time series peak detection, and
predicted the crashes of BET-FI in 2007. Kurz-Kim (2012) applied the LPPL
to detect the stock market crash in Germany, which demonstrated that the
LPPL is an early warning indicator for financial crashes. Geraskin and Fan-
tazzini (2013) introduced alternative methodologies, together with diagnostic
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tests and graphical tools, to investigate the gold bubble in 2009. Korzeniowski
and Kuropka (2013) used a GA to fit the LPPL based on time series of the
DJIA and WIG20, and found it to be useful as a forecasting tool for financial
crashes.

However, previous research still encounters problems regarding forecasting
the critical time of financial bubbles using the LPPL model. First, prediction
results are sensitive to the initial values because the nonlinear optimization
algorithm based on derivatives, e.g. gradient, curvature, etc., can easily to be
trapped in local minima. Second, even though many of the LPPL forecasting
results are good, the estimated parameters may be outside their reasonable
ranges. Third, even if we can set some constraints for the GA to solve the
problems mentioned, we do not have a proper way to provide a reasonable
initial population to GA. Finally, there has been neither sufficient analysis of
the LPPL model nor thorough assessment of its goodness-of-fit.

In this paper, we investigate whether it is possible to predict market crashes
by analyzing fluctuating financial bubbles, and whether it is possible to cap-
ture a shift over time in the log-periodic oscillations of stock prices that are
associated with market crashes. Our work contributes to the existing litera-
ture by establishing an algorithm that can provide a series of reasonable and
stable initial values for LPPL estimation. Our extensive approach avoids be-
ing trapped in local minima, and provides a good and robust forecast, with
the imposition of constraints on LPPL parameters. The results show that
our algorithm provides superior performance in regard to capturing financial
bubbles. Our predictions of critical times are highly concentrated around the
actual times when crashes took place. Using diagnostic analysis, we also show
a relatively small and stationary residual.

The remainder of this paper is organized as follows. In Section 2, we pro-
pose a model of rational imitation in which stock prices are characterized by
an LPPL evolution. We introduce the main feature of an LPPL, describe the
underlying mechanism of the LPPL model, and define the main rationale be-
hind the model. In Section 3, we explain the methodology and data that we
use to fit the LPPL parameter. We implement an algorithm, which is exten-
sively described, and highlight the distinctive key properties. In Section 4, we
present the prediction results, diagnostic tests, and model comparisons of our
algorithm to fit the log-price data of financial bubbles of the S&P 500 in 2000,
Nikkei 225 in 1989, HSI in 2007 and SSEC in 2015. In the final section, we
conclude the paper and discuss future research.

2 The LPPL Model

The LPPL model simultaneously estimates the continuation and termination
of a bubble. The notion that financial crashes are manifestations of power
law accelerations essentially suggests that endogenously induced stock market
crashes might obey a particular power law, with log-periodic fluctuations. The
basic form of the LPPL model can be written as
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yt = A+B (tc − t)β {1 + C cos [ω ln (tc − t) + φ]} , (1)

where yt > 0 is the price, or the log of the price, at time t, A > 0 is the price at
the critical time tc, B < 0 is the increase in yt over the time before the crash
when C is close to 0, C ∈ (−1, 1) controls the magnitude of oscillations around
the exponential trend, tc > 0 is the critical time, β ∈ [0, 1] is the exponent of
the power law growth, ω > 0 is the frequency of the fluctuations during the
bubble, and φ ∈ [0, 2π] is a phase parameter.

The term B (tc − t)β characterizes super-exponential growth that leads to
a critical time. The term C cos [ω ln (tc − t) + φ] acts as an accelerating oscil-
lation as the critical time approaches. The residuals follow a mean-reverting
Ornstein-Uhlenbeck (OU) process captured by

vt+1 − vt = −αvt + ut , (2)

where vt is the residual of the LPPL model, α is a positive coefficient, and ut
is Gaussian white noise.

The underlying mechanism of the LPPL model is based on rational ex-
pectations. The dynamics of the asset price before the crash are given by the
following stochastic differential equation:

dpt = µtptdt− κptdj , (3)

where µt is the time-dependent drift, κ is the proportion by which the price
is expected to decrease if a crash occurs, and j is a jump process whose value
is zero before the crash and one after the crash.

We assume no arbitrage in the market so that the price process satisfies
the martingale condition Et [dpt] = µtptdt− κpthtdt = 0, then

µt = κht , (4)

where ht denotes the hazard rate at time t, which is the probability per unit
of time that the crash will occur during the next unit of time, if it has not
occurred yet.

Substituting Eq. (4) into Eq. (3), we obtain the differential equation before
the crash given by d (ln pt) = κhtdt, whose solution is

ln

(
pt
pt0

)
= κ

∫ t

t0

hsds . (5)

Eq. (5) shows the manner in which the hazard rate is a critical component
for price behavior: The higher the hazard rate, the faster the price increases
before the crash.

Following Liggett (1997) and Johansen et al. (2000), we introduce a dy-
namic stochastic model in which each trader i (for i = 1, · · · , n) can either
buy (+1) or sell (−1). The current state is determined by

si = sign

K ∑
j∈N(i)

sj + σεi

 , (6)
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where K is the tendency toward imitation (coupling strength), N (i) is the
set of traders who influence trader i, σ is the tendency toward idiosyncratic
behavior, and εi is a random variable.

In Eq. (6), K and σ are critical parameters because an increase in K forces
the order in the network to increase, whereas σ works in the opposite direc-
tion. There exists a critical point, Kc = K(tc), that determines the separation
between the different regimes: (i) if K < Kc, the system is in a disordered
state and the sensitivity to small global perturbations is low; (ii) as K ap-
proaches Kc, imitation forces traders to act collectively, most of the traders
have the same state, and the system becomes more sensitive to small global
perturbations; and (iii) when K > Kc, the tendency toward imitation is so
intense that there exists a strong predominance of one state.

Following Johansen et al. (2000), we assume that traders are placed on a
two-dimensional grid and each trader has four neighbors. The susceptibility of
the system near the critical value Kc can be shown as follows:

X ∝ (Kc −K)
−γ

,

where γ > 0 is the critical exponent of susceptibility according to a power law.
If K evolves smoothly, we can apply a first-order Taylor expansion around

the critical point tc. Then, prior to tc, we have the following approximation:

Kc −K ∝ (tc − t) .

Given that the hazard rate of the crash behaves in the same way as the
susceptibility in the neighborhood of the critical point, we get

ht ∝ (tc − t)−(1−β) , (7)

where 1−β > 0 is the critical exponent of hazard rate like that of susceptibility.
Substituting Eq. (7) into Eq. (5) and integrating, we finally obtain a power

law growth model
ln pt = A+B (tc − t)β .

A hierarchical diamond lattice is an appropriate structure of financial mar-
kets, and describes our model of rational imitation (Derrida et al. 1983; Jo-
hansen et al. 2000). The hierarchical structure can be interpreted as follows:
(i) start with two original traders linked to each other; (ii) substitute each link
with a diamond with four links and the two new vertices diagonally occupied
by two new traders; and (iii) after n iterations of the second process, there are
N = 2

3 (2 + 4n) traders and L = 4n links.
The lattice structure has a general solution of susceptibility given by a

first-order expansion as follows:

X ≈ B0 (Kc −K)
−γ

+B0C0 (Kc −K)
−γ

cos [ω ln (Kc −K) + ψ] .

Thus, we obtain the hazard rate with the approximation of a first-order
expansion as follows:

ht ≈ B1 (tc − t)−(1−β) +B1C1 (tc − t)−(1−β) cos [ω ln (tc − t) + φ] . (8)
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Substituting Eq. (8) into Eq. (5) and integrating provides Eq. (1), which
is known as the LPPL model.

3 Methodology and Data

3.1 Fitting the LPPL Parameters

The basic form of the LPPL, given by Eq. (1), requires the estimation of seven
parameters. The parameter set must be such that the root mean square error
(RMSE) between the observation and predicted value of the LPPL model is
minimized as follows:

RMSE =

√√√√ 1

T

T∑
t=1

(Yt − yt)2

where Yt denotes the observation at time t and T the number of trading days
in the dataset.

Let ft = (tc − t)β and gt = (tc − t)β cos [ω ln (tc − t) + φ], then the LPPL
model, Eq. (1), can be rewritten as

yt = A+Bft +BCgt.

It is straightforward that the linear parameters A, B and C can be esti-
mated using ordinary least squares (OLS) given the four parameters β, ω, tc
and φ. Thus, determining suitable values for these four parameters is critical
for fitting the LPPL model.

We fit the LPPL parameters using two steps. In the first step, we pro-
duce the initial values for the parameters with a price gyration method. In
the second step, we optimize these parameters using a nonlinear optimization
algorithm, GA.

Liberatore (2011) defined a price gyration method to produce the initial
values of the LPPL parameters by visually inspecting stock prices as follows:

1. Identify three consecutive stock price peaks: i, j and k.
2. Estimate the initial values of tc, ω and φ from price gyrations as follows:

tc = ρk−j
ρ−1 , ω = 2π

ln ρ and φ = π − ω ln (tc − k) with ρ = j−i
k−j .

3. Set the other initial values, i.e. β = 1 and C = 0.
4. Estimate the initial values of A and B using an OLS fit:

pt = A+B (tc − t) + εt.

Pele (2012) extended the approach of Liberatore (2011) using an automatic
time series peak detection algorithm (Palshikar 2009) described as follows:
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1. Define a peak function Si which associates a score with element p(i) and
distance κ

Si [κ, i, p (i)] =
1

2
{max [p (i)− p (i− 1) , · · · , p (i)− p (i− κ)]

+ max [p (i)− p (i+ 1) , · · · , p (i)− p (i+ κ)]} . (9)

2. Screen the series of Si using Si > 0 and Si −m > hs, where m and s are
the mean and standard deviation of Si, and h is a positive coefficient.1

3. Then, retain only one peak with the largest value from any set of peaks
within distance κ and finally obtain the peak series.

Once the peaks are detected, price gyration might encounter following
problems. The prediction results are not stable for different window sizes and
the estimation of critical times is not sufficiently accurate if peaks are far from
the end point of the sample. To eliminate these issues, we relax and improve
the idea of a fixed window size and equally weighted peaks. Our window size κ
for peak detection is no longer fixed, which allows us to test for different possi-
bilities of a fluctuating cycle of LPPL growth. Because more recent data have
made a greater contribution to forecasting, we implement a distance-based
weighting (DBW) approach for peak selection. After detecting the peaks, we
obtain a series of peaks. We assume that the sample size of the index time
series is T , then the initial weight of each peak i is

w0,i =
1

T − i
. (10)

We standardize the value so that the sum of the weights of all the peaks
equals 1. Then, the weight of each peak i is

wi =
w0,i∑n
j=1 w0,j

, (11)

where n is the total number of peaks.
The second cornerstone of our algorithm is the use of a GA to fit the

LPPL. Compared with other nonlinear optimization algorithms, such as quasi-
Newton and the LMA, a GA has many advantages. It avoids some local minima
because the search for solutions runs in parallel and does not require additional
information about the shape of the calculated plane. Moreover, the objective
function does not need to be continuous or smooth. The GA is implemented
using the following steps:

1. Each member of the initial population is a vector of the seven LPPL pa-
rameters (A, B, C, tc, β, ω, φ) generated by our improved price gyration
algorithm. The RMSE is calculated for each member.

2. An offspring is produced by randomly drawing two parents, without re-
placement, and calculating their arithmetic mean. If any parameter value
is outside the constraints, it is set as the closest boundary value.

1 h is typically set within 1 ≤ h ≤ 3 (Liberatore, 2011). In this paper we choose h = 1.5.
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3. A mutation perturbs the solutions so that new regions of the search space
can be explored. The mutation process is performed by adding a perturba-
tion variable for each coefficient in the current population. As the perturba-
tion may drive the parameters out of the constraints, the closest boundary
value will be given to these parameters as in the step 2.

4. After breeding and mutation, we merge the newly generated individuals
into the population. All the solutions are ranked according to their RMSE
in ascending order and only half of the best solutions can survive to the
next generation.

5. We iterate this procedure and choose the best fit as the final solution.

Johansen and Sornette (2001) found that whether an LPPL model can
capture crashes well depends, to some extent, on the specific bounds of the
critical parameters β and ω. Based on their finding, we impose constraints
on the LPPL parameters that are consistent with previous literature. Table 1
defines the constraints on the LPPL parameters.

Table 1: Restrictions on LPPL parameters

Parameter Constraint Literature

A (max (P ) ,+∞) Korzeniowski et al. 2013

B (−∞, 0) Lin et al. 2014

C (−1, 1) Lin et al. 2014

tc (t,∞) Korzeniowski et al. 2013

β [0.1, 0.9] Lin et al. 2014

ω [5, 15] Johansen 2002; Lin et al. 2014

φ [0, 2π] Lin et al. 2014

To summarize, the algorithm we propose implements the following steps:

1. Detect the peaks of the sample with window size κ following Palshikar
(2009) and Pele (2012).

2. Assign the weight of each peak using the DBW approach.
3. Randomly select three consecutive peaks based on the weights.
4. Use these three consecutive peaks for price gyration and obtain the initial

values of tc, ω and φ.
5. Set the initial values β = 1 and C = 0, and estimate the initial values of
A and B using OLS.

6. Repeat steps 3 to 5, and obtain a series of initial values for the seven LPPL
parameters.

7. Find the LPPL parameters using the GA with the initial population of the
parameters from step 6 and constraints.

8. Repeat steps 1 to 7, change the window size κ, and obtain the prediction
interval of the critical time tc.
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Our algorithm combines the price gyration method with the GA, which
extends existing research using a floating window size for peak detection and
the DBW approach for peak selection.

3.2 Data

First, we need to identify financial bubbles and crashes. A financial bubble
occurs when the asset price continues to increase for a long period of time
beyond its fundamental value, whereas a financial crash is defined as a sub-
stantial decrease of the asset price when the bubble bursts. Stock bubbles and
market crashes are identified according to Brée and Joseph (2013) as follows:
(i) stock prices increase by more than 25% for a period of 252 weekdays prior
to the peak; and (ii) stock prices decrease by more 25% for a period of 126
weekdays.

Based on these criteria, we choose four stock bubbles and market crashes
that occurred during different time periods and in different financial markets:
the dot-com bubble in the late 1990s,2 the Japanese asset price bubble in
the late 1980s,3 the Hong Kong stock bubble of 2007,4 and the Chinese stock
bubble of 2015.5 Table 2 summarizes the characteristics of price series for these
four periods of financial bubbles. The daily closing prices of four indices are
from the WIND database.

Table 2: Historic stock market bubbles and crashes

Index Period Observations Critical Time

S&P 500 11/05/1994 - 17/03/2000 1479 24/03/2000

Nikkei 225 23/07/1984 - 22/12/1989 1330 29/12/1989

HSI 25/04/2003 - 23/10/2007 1123 30/10/2007

SSEC 27/06/2013 - 05/06/2015 475 12/06/2015

2 During the dot-com bubble in the late 1990s, stock markets saw their equity value
increase rapidly from growth in the Internet sector and related fields. The collapse of the
bubble occurred during the period 1999–2001.

3 In the Japanese asset price bubble in the late 1980s, real estate and stock market prices
were greatly inflated. The bubble was characterized by a rapid acceleration of asset prices
and overheated economic activity, in addition to an uncontrolled money supply and credit
expansion. By August 1990 (the fifth monetary tightening by the Bank of Japan), the Nikkei
stock index had plummeted to half of its peak price.

4 The announcement of the “through train” scheme by SAFE caused a frenzied boom in
the Hong Kong stock market in 2007. In less than 2 months, the Hang Seng Index increased
from 20, 000 to a peak of 31, 958 at the end of October. As the Central Government of
China postponed the “through train” scheme indefinitely, the Hong Kong stock market
encountered a substantial daily decrease of 1, 526 points on December 5, 2007.

5 During the Chinese stock bubble of 2015, the Shanghai Stock Exchange Composite Index
increased by approximately 150% within a year. Because of a series of government policies
to deleverage the stock market, a third of the value of A-shares on the Shanghai Stock
Exchange was lost within a month after June 2015. Subsequently, the market underwent
two further crashes in August 2015 and January 2016.
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After identifying the financial bubbles, we need to select carefully the time
window to estimate the LPPL model. Following Johansen and Sornette (2001)
and Brée and Joseph (2013), we select the forecasting window as follows: (i)
the time window starts at the end of the previous crash, that is, the lowest
point since the last crash; (ii) the day with the peak value of the index is the
actual critical point of the financial bubble; and (iii) the endpoint is divided
into four groups, which are from 1 to 4 weeks before the actual critical point.

4 Quantitative Analysis

4.1 Empirical Results

We applied our algorithm to predict the critical times of financial bubbles in
the aforementioned four markets. Table 3 summarizes the forecasting results
of our algorithm. The last column P100 denotes the percentage of predicted
critical times within 100 weekdays around the actual critical time. IQR is the
interquartile range of prediction interval, which was computed by subtracting
the first quartile from the third quartile. According to the table, our algorithm
provides a good forecast of the four stock market bubbles.

Table 3: Summary of predicted critical times

Index End Date 95% Prediction Interval IQR P100

S&P 500

17/03/2000 [06/07/2000-14/09/2000] 18.91 77.78%

10/03/2000 [11/07/2000-20/09/2000] 19.05 70.21%

03/03/2000 [19/06/2000-05/09/2000] 21.19 76.47%

25/02/2000 [21/06/2000-25/08/2000] 15.67 94.44%

Nikkei 225

22/12/1989 [03/04/1990-15/06/1990] 16.69 89.58%

15/12/1989 [30/03/1990-21/06/1990] 18.41 88.64%

08/12/1989 [22/03/1990-04/06/1990] 21.43 93.88%

01/12/1989 [23/03/1990-18/05/1990] 10.92 98.39%

HSI

23/10/2007 [17/10/2007-14/02/2008] 36.28 100%

16/10/2007 [15/10/2007-03/03/2008] 42.17 100%

09/10/2007 [26/10/2007-05/02/2008] 15.50 100%

02/10/2007 [25/10/2007-05/02/2008] 17.76 100%

SSEC

05/06/2015 [05/05/2015-24/07/2015] 7.61 100%

29/05/2015 [28/04/2015-15/07/2015] 8.10 100%

22/05/2015 [23/04/2015-09/07/2015] 14.12 100%

15/05/2015 [27/04/2015-07/07/2015] 18.87 100%

Note: The end date is divided into four different groups, which are from 1 to 4 weeks
before the actual critical point.
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We forecast a 95% prediction interval of critical times with a period of no
more than 100 weekdays for all the stock market bubbles. The interquartile
ranges of the predicted critical times for all the bubbles are within 50 weekdays,
which means that our predictions are highly concentrated. Even though the
last observation of the sample changes from 1 week to 4 weeks before the actual
critical time, most of our prediction intervals demonstrate stable behavior.
More than two thirds of the predicted critical times are within 100 weekdays
of the actual critical time for all the bubbles. For the short-term bubbles,
for example HSI and SSEC, all the predicted critical times are within 100
weekdays of the actual critical time.

In addition to forecasting the critical time, it is important to qualify the
LPPL calibration, i.e. to check the stylized features of LPPL which are reflected
by the restrictions on the parameters mentioned in Table 1. Table 4 shows the
best LPPL fits for the four financial bubbles estimated by our algorithm. Since
we use the GA with constraints, all the estimated parameters are within the
boundaries. The two conditions B < 0 and 0.1 ≤ β ≤ 0.9 ensure a faster-than-
exponential acceleration of the log-price with a vertical slope at the critical
time tc (Lin et al. 2014). The positive hazard rate always holds because the
absolute value of C is restricted in one unit. The values of ω are close to
the lower bound 5, which corroborates the existing studies such as Johansen
(2002), who found that ω ≈ 6.36 ± 1.56 for 30 crashes on major financial
markets.

Table 4: LPPL parameters of best fit

Index A B C β ω tc φ RMSE

S&P 500 7.59 −0.008 −0.061 0.714 5.11 1566 4.318 0.055

Nikkei 225 10.79 −0.009 −0.115 0.700 5.05 1389 5.191 0.059

HSI 10.20 −0.013 0.074 0.609 5.12 1126 0.601 0.050

SSEC 10.73 −1.660 0.034 0.109 5.00 479 4.574 0.050

4.2 Diagnostic Tests

To reduce the possibility of false alarms, it was necessary to conduct diagnostic
analysis to demonstrate our predictions. We conducted the diagnostic analysis
by considering the relative errors, unit root test of LPPL residuals, sensitivity
analysis of LPPL parameters and crash lock-in plot (CLIP) analysis.

The relative error analysis of the best fits shows that the bubbles are well-
captured by our model. In the analysis of Johansen et al. (2000), most of the
relative errors of their best fits were below 5%. Our algorithm significantly
improves their result, demonstrating more accurate performance in capturing
the four financial bubbles. The significance of our findings is quite evident and
immediate in Figure 1, where the relative errors of all the fitting points of
these four indices are well below 3%.
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Fig. 1: Relative error analysis of the best LPPL fits

One key property of the LPPL model is that the residuals follow a mean-
reverting OU process, Eq. (2). Table 5 shows the results of unit root tests.
Both ADF and PP tests with two lags for the best fit of the four indices
reject the null hypothesis H0 at a 1% significance level, which means that the
residuals do not have a unit root but are stationary and thus compatible with
a mean-reverting OU process.

Table 5: Unit-root test for LPPL residuals

Index ADF PP

S&P 500 −3.117∗∗ −3.176∗∗

Nikkei 225 −2.921∗∗ −3.108∗∗

HSI −3.532∗∗∗ −3.962∗∗∗

SSEC −2.610∗∗ −2.658∗∗

We also investigated how sensitive the RMSE is to variations in the LPPL
parameters. Because A, B and C are always estimated given the four parame-
ters β, ω, tc and φ, we examined the sensitivity of the LPPL fit to variations in
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these four parameters. We let tc and one parameter among β, ω and φ vary for
the S&P 500, while the remaining parameters were fixed. The results in Figure
2 show that the variation of the RMSE is relatively smooth with respect to
β, tc and φ, and that of the RMSE is highly sensitive to small fluctuations
in ω. Figure 2 shows significant evidence supporting the choice of a GA in-
stead of the LMA to fit the LPPL model. If the initial value of ω is close to
a local minimum, the searching algorithm of the LMA can be easily trapped
because it achieves a local optimal solution. Compared with the LMA, the
search of a GA for solutions runs in parallel, which means that even when a
local minimum has been found, small variations in the parameters might avoid
the search procedure becoming trapped.
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Fig. 2: Sensitivity of the RMSE to LPPL parameters for S&P 500

Finally, we analyze CLIP following Fantazzini (2010). A CLIP is a useful
tool for tracking the development of a bubble and understanding whether a
possible crash is imminent. The main idea of a CLIP is to plot the date of
the last observation in the estimation sample on the horizontal axis and the
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estimated crash date tc on the vertical axis. If a regime change in the stock
market is approaching, then the estimated tc should be stabilized around a
constant value close to the critical time. To implement a CLIP, we continued
changing the last observation of our estimation sample from 1 week to 8 weeks
before the actual critical time and made predictions for the four financial
bubbles. From Figure 3, we can see that our predicted results for tc are stable,
especially in the last 4 weeks before the crash. Moreover, the predicted tc are
also very close to the actual critical time. These results indicate that when the
crash is imminent, our algorithm provides a robust and precise forecast of the
critical time.
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Fig. 3: Crash lock-in plots with rolling estimation windows

4.3 Model Comparison

As a final step, we compared the prediction accuracy of critical time tc for
the following two models: (i) price gyration algorithm for searching initial
values and the LMA for optimization, M1; and (ii) the improved price gyration
algorithm, which is applied with different window sizes and a DBW approach,
and a GA with constraints for optimization, M2.

For both methods, we forecast the critical time tc using different last ob-
servations of the estimation sample from 1 week to 4 weeks before the actual
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critical time and merge the results of four groups into one sample. We com-
puted the 95% prediction interval of tc, IQR and P100. The prediction results
of tc are shown in Figure 4, in which we immediately observe that M1 cannot
predict critical times particularly well because most of the predicted tc occur
somewhat earlier than the actual critical time. The 95% prediction intervals
of tc are too large for forecasting. Except SSEC, all the other indices have less
than one-third of the predicted tc within 100 weekdays of the actual critical
time, which means that this approach is unable to predict the crash effec-
tively. M2 predicts a relatively accurate tc compared with M1. Most of the
predicted tc are close to each other and form a 95% prediction interval of tc
of less than 100 weekdays in addition to an interquartile range of less than 30
weekdays, which means that our predicted results are highly concentrated. In
addition, more than 80% of the predicted tc are within 100 weekdays of the
actual critical time for all four financial bubbles, which also demonstrates that
our method provides a better forecast of the critical time.
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Fig. 4: Logarithm of the stock price and corresponding alarms
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5 Conclusion

This paper provides an algorithm to predict the critical time of financial bub-
bles with an LPPL model. The parameters are estimated by minimizing the
cost function by means of a nonlinear optimization method. This algorithm
consists of two steps, (i) a price gyration method to generate an initial candi-
date of parameters and (ii) a genetic algorithm to find the optimal solution.
Specifically, we go beyond the price gyration method in the previous litera-
ture. In our case, different window sizes are applied to peak detection since the
fixed window size may omit the possible variation in cycle of LPPL growth.
Given the peaks detected, we use a DBW method to assign the weights on
each peak according to its distance to the crash day. The DBW method makes
the estimation accord with reality, i.e. the recent data have more influence on
forecasting.

For validation, we performed an ex-ante prediction on the time of crashes
on four stock market indices. The critical time of the bubbles, when the crashes
may happen with significant probability, is one of the parameters in the LPPL
model. Our predictions on critical times are highly concentrated around the
actual time. Moreover, diagnostic analysis demonstrates our results in different
aspects. First, we generate a smaller prediction error with large randomness.
Second, our prediction is stable with respect to moving the termination time of
the observation period. Third, as for the degree of concentration and accuracy,
we present a more significant improvement than an existing algorithm.

Our work focuses on bubbles in stock price, and it can be extended to
other assets without loss of generalization, such as bubbles in real estate and
credit assets. Also, the LPPL model mainly focuses on the time period prior to
crashes. However it leaves blank the price behavior in the post-crash periods
when mispricing may still exist, which is of policy significance to stabilize
and boost the economy once crashes occur. In addition, since parameters in
LPPL characterize stock markets, they have a large potential to be related
to economic fundamentals. Thus as future research, additional analysis on
whether and how the LPPL model reflects macroeconomic conditions is of
interest.
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