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ABSTRACT: A major drawback of the widely successful density functional theory is
its underestimation of the material band gap. Various methods have been proposed to
correct its band gap predictions. Wannier Koopmans method (WKM) is recently
developed for this purpose to predict the band gap of extended 3D bulk systems.
While the WKM has also been shown to be successful for isolated molecules, it is still
a question whether it will work for 2D materials that are in between the 0D molecules
and 3D bulk systems. We apply the WKM to 16 commonly known well studied 2D
materials and find that the WKM predicted band gaps are on par with their GW
calculated results.

Two-dimensional materials are intensely studied systems in
recent years with potentially broad range of applica-

tions.1,2 Because of their unique properties in both the atomic
structures and electronic properties, the 2D materials have
been used in transistors,3,4 lithium-ion batteries,5 metal-air
batteries,6 supercapacitors,7,8 and solar cell devices.9 To
theoretically study such materials, one basic capability is to
predict their fundamental band gaps. This is particularly
important for the 2D materials. Because of the insufficient
screening, the exciton binding energy is often very large (could
be close to 1 eV), and thus the optical absorption spectrum can
often not be used to measure the fundamental band gap. Here,
by fundamental band gap, we mean the difference between the
ionization energy (IE) and electron affinity (EA). Unfortu-
nately, the widely use density functional theory (DFT) often
significantly underestimates this fundamental band gap. As a
result, the band gap prediction is often done with GW
method.10 The GW calculation of 2D material can be
challenging by itself due to difficult k-point and number of
conduction bands convergence.11 It is thus helpful if there are
alternative methods to calculate the band gaps of such systems.
It is well known that the DFT in either the local density

approximation (LDA)12 or generalized gradient approximation
(GGA)13 significantly underestimates the band gaps, including
the 2D material band gaps. There are empirical meta-GGA13

methods that are proposed to yield better band gaps. There are
also hybrid functionals like HSE06, B3LYP14,15 methods that
mix part of the exchange integral in the energy functional.
Most of these methods are in a sense empirical in nature, while
they work well for the systems included in the original fitting,
but they could have significant error for new type of systems.
For example, as we have shown before, the HSE06 with the
original parameters significantly underestimate the band gaps
of alkali halides.16

Recently, we have developed a Wannier Koopmans Method
(WKM) to calculate the band gaps for bulk materials.17 This
method extends the ΔDFT18 method that works only for
isolated molecules. Traditionally, in ΔDFT method, one
calculates EA and IE explicitly using E(N + 1) − E(N) and
E(N) − E(N − 1), respectively, using self-consistent total
energy calculations. While the ΔDFT works amazingly well for
atoms and small isolate molecules,18 it fails for extended
systems, in which according to Janak’s theory18 the total
energy differences just equal the Kohn−Sham eigenenergies.
The WKM method solves this problem by placing the extra
electron (or the hole) not in the extended Kohn−Sham
eigenstates but instead in the localized Wannier functions,
meanwhile requiring the satisfaction of Koopmans’ theory.
This means the total energy as a function of the Wannier
function occupation sw must be linear. To satisfy this
Koopmans theory requirement, one additional term is added
to the Kohn−Sham Hamiltonian. This term corrects the
eigenenergy of the Kohn−Sham equation. More explicitly, we
can write down the total energy of the WKM method as

E E s E s( ) ( )w
w

w wWKM LDA ∑= { } +

Here the subscribed w indicates different orthogonal
Wannier functions and 0 < sw < 1 is the occupation number
of the Wannier functions w. sw = 0 means this Wannier
function is not occupied, and sw = 1 means fully occupied
Wannier function. For a system with neutral charge, sw = 1 for
all Wannier functions constructed from valence band and sw =
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0 for all of the conduction band Wannier function. ELDA({sw})
is the LDA energy under the condition that Wannier function
w is occupied with sw (see ref 17 for how to calculate
ELDA({sw})). To make EWKM linear with sw for a particular w
(starting from the neutral system ground state), the term
Ew(sw) can be expressed as

E s s s( ) (1 )w w w w wλ= −

The λw can be obtained from the self-consistent calculation
of ELDA({sw}) for a supercell much like for a charged defect
calculation. After the Wannier function and the λw are
obtained, a corresponding modified Kohn−Sham equation
can be derived by taking the derivative of EWKM with regard to
the orbital ψi, while sw = ∑i⟨w|ψi⟩

2 o(i), where w is the
Wannier function and o(i) is the occupation of the Kohn−
Sham orbital ψi. Then the band energy is obtained from the
eigenenergy of the modified Kohn−Sham orbital. For details of
the calculation, we refer to ref 17.
We have applied the above WKM to 27 common covalent

bond semiconductors and all 20 alkali halides.16,17 This covers
the range from covalent bonded semiconductor to the extreme
ionic systems. The band gaps of all of these systems agree well
with both the experimental results and the GW calculations.
The typical error is within a few tenths of an electronvolts for
large band gap systems and one or two tenths of an
electronvolt for systems with band gaps around 1 to 2 eV.
Overall, the band gap error is similar to that of the GW
method. We have also tested band alignment between the
organic molecular and Au substrate19 using WKM. The results
also agree well with the experiment. At this point, it is
important to apply WKM to other types of systems to check its
limitation and accuracy.
In the current work, we apply WKM to 16 commonly known

2D materials in their monolayer phases. This is an important
test. Because the WKM has been tested for 3D systems and
also shown to be accurate for 0D isolated molecules, it is
natural to ask what the case is for systems in between. As we
discussed in ref 17, the band gap correction of WKM is very
much related to the self-interaction correction (SIC) of the
LDA Hamiltonian, such SIC should be very different in 2D,
3D, and 0D due to the different screening dimensionality.
Unfortunately, not all of the experimental fundamental band

gap results are known for 2D materials. For most systems, only
the optical band gaps have been measured. As has been
shown,20 the optical band gap can be rather different from the
IE-EA fundamental band gap due to the large exciton binding
energies for these 2D materials. Because of this, we have
compared our results with the GW calculated results for
comparison, although there could be some variations in the
GW results themselves due to input DFT dependence, k-point,
and number of conduction band convergence issues. It is
particularly challenging to yield converged GW results for
these systems.11,21 Thus, instead of calculating them ourselves,
we largely rely on published literatures for GW values. As
shown in the Supporting Information, most of the GW results
we used are G0W0 results, while a few are GW0 results when
they are available. In our calculation, spin orbital coupling was
taken into account. We will also discuss the supercell
convergence issue of WKM calculation as well as the Wannier
function generations.
Four types of 2D structures are considered, as shown in

Figure 1. They are MX2 materials in 2H phase (Figure 1a),
MX2 in 2T phase (Figure 1b), black-phosphor-like (or say
SnS) 2D materials (Figure 1c), and graphene (or say BN) like
2D materials (Figure 1d). More specifically, we have MoS2,
MoSe2, MoTe2, WS2, WSe2 and WTe2 in the 2H phase of
Figure 1a and SnS2, SnSe2, ZrS2, ZrSe2, PtS2, and PtSe2 in the
1T phase of Figure 1b. SnS and SnSe have similar structures
like black phosphors in Figure 1c (although with two atom
types), and we have also calculated the band gap of BN in
Figure 1d. All of the lattice constants and positions of atoms
can be found in the Supporting Information. We have used the
experimental lattice constant from the materials project.22

In our calculation, the DFT method was implemented in
PWmat code,23,24 which runs on graphics processing unit
(GPU) processors. NCPP-SG15-PBE pseudopotential was
used in the calculation.25,26 For all of the initial LDA
calculations (system with two, three, or four atoms unit
cells), a 24 × 24 × 1 Monkhorst−Pack k-point set was used to
generate Wannier functions.27 30 Å is used in the z-direction
for the bulk calculation to avoid the image interaction. For the
calculation in lambda, k-point sets vary from different supercell
and atom number. Spin−orbital coupling (SOC) is calculated

Figure 1. Four types of structures used in WKM calculation. (a) 2H type MX2 2D materials, (b) 1T type MX2 2D materials, (c) black phosphors
type 2D materials, and (d) BN type 2D materials.
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with SOC pseudopotential in the NCPP-SG15-PBE format. 60
Ryd plane-wave cutoff is used throughout the calculations.
In our WKM calculations, we first generate Wannier

functions by using the Wannier90 code.28 This, however, is
not so straightforward. To get good WKM result, we need
localized Wannier functions. Although the final band gap does
not sensitively depend on the exact nature of the Wannier
functions as long as they are localized, if the generated
Wannier function is rather delocalized, then the result can have
significant error. To generate localized Wannier functions for
the 2D systems, we have the following observations: (a) Try to
use as small a number of Wannier functions as possible to
represent valence band maximum (VBM) and conduction
band minimum (CBM) states. This can minimize the errors
from the Wannier90 code. (b) Try to use big enough supercell
during the calculation so the Wannier function can be
sufficiently localized. Our calculation of ELDA({sw}) is done
using a supercell. This is rather like the calculation of a defect
state with a charged impurity.
Care must be taken to ensure the convergence of the

supercell size to avoid the artificial Coulomb interactions
between the image charges. This is particularly intriguing for
2D systems. For example, if the x, y directions are fixed, while
one increases the z-direction supercell size (the distance
between two repeating layers), the artificial Coulomb
interaction between image charges actually increases linearly
with the z-direction distance (using a uniform back ground
charge to make the whole supercell charge neutral). This is
because in an average sense the 2-D plane will have a constant
charge planar density and hence a constant electric field
perpendicular to the plane, and thus the interaction energy
increases linearly to the plane−plane distance. On the contrary,
if the distance between the two planes (the z-direction
supercell size) is fixed, while one increases the x,y direction
supercell size R, the interaction energy will scale as ln(R); see
the Supporting Information for the derivation. The correct way
is to increase all three dimensions on the same scale; in that
case, the artificial Coulomb interaction will scale as 1/R. Thus
we could not have a converged lambda if we simply increased
the thickness of vacuum layer or increased the x,y dimensions
of the supercell while keeping the layer−layer distance
unchanged.
As an example, the pz orbital Wannier function of N atom in

the BN valence band is shown in Figure 2a. Its accumulated
charge from the center, Q(r) = ∫ |r′|<r w(r′)d3r′, is plotted in
Figure 2b for a 9 × 9 × 9 unit super cell. (Here the z-direction
size, the third 9, is proportionally chosen from the x,y direction
size.) We can see that the charge is localized within about 3 Å.
The λw for this particular Wannier function is 2.27 eV when 9
× 9 × 9 supercell is used. It increases to 2.30 eV when a 4 × 4
× 4 supercell is used. However, for a 3 × 3 × 3 supercell, the λw
value increases to 2.97 eV. The convergence of λw as a function
of supercell size is plotted in Figure 3. Similar convergence is
found for other Wannier functions and systems. On the basis
of this test, in the following calculations of all of the other
systems, to have a safe margin, we have used 6 × 6 × 6
supercells to carry out the calculations of ELDA({sw}) to obtain
λw.
Our final WKM calculated band gaps (with spin−orbit

coupling correction included) are plotted in Figure 4 in
comparison with the G0W0 band gap. The original data can be
found in Table S1. We find out that the WKM band gaps are
mostly within 0.2 eV of the G0W0 results. However, there can

be considerable scatter in the literature for the G0W0 band gap
for a given 2D materials, as shown in Table S1. For example,
monolayer MoS2 has G0W0 band gap values from 2.67 to 2.84
eV based on different literatures.11,29−32 Because more
conduction bands in the G0W0 calculation usually result in
larger band gaps,21 we have used the largest G0W0 results in
Table S1 in plotting Figure 4. Overall, we find the agreement
between the GW result and the WKM results rather
satisfactory, especially given the uncertainties of the GW
calculations themselves. We do notice that it is particularly
challenging to include a sufficient number of conduction bands
in the 2D material GW calculations due to the unbounded
nature (extended to the vacuum space) of high-energy
conduction bands.
We have also included the LDA band gap and HSE band gap

in Figure 4. We see how the WKM significantly improves the

Figure 2. (a) Wannier function of pz orbital for N atom in BN
valence band. (b) Charge density by the distance from the central of
Wannier functions in a supercell of 9.

Figure 3. BN valence band correction by the supercell used in lambda
calculation. The super cell size is n × n × n; here n × n is the xy plane
supercell in terms of primary cell and c is a dimension in the z
direction with its length similar to the primary cell edge length.
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LDA band gap error. To a limited extent, HSE can improve the
band gap calculations, but on average it predicts smaller band
gaps than G0W0 band gaps. One can, of course, increase the
mixing parameter to increase the band gap in HSE calculation;
nevertheless, that can make its prediction of other materials
less satisfactory. Thus it is challenging to have a universal set of
HSE parameters to reproduce the hand gaps of all materials.
In conclusion, we have applied our WKM method to 2D

semiconductors and discussed the procedure to generate the
Wannier functions and make the supercell calculations
converge. We found that the WKM method predicts the
fundamental gap on par with the G0W0 calculations. This
demonstrates once again that the WKM is a rather general
method without parameter fitting.
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