

[Review]

1

Research Progress into the Structure and Performance of LiFePO₄ Cathode Materials

HU Jiangtao, ZHENG Jiaxin, PAN Feng*

School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, Guangdong Province, P. R. China.

Abstract: Lithium-ion batteries (LIBs) possess many virtues, such as low weight, a high energy density, and a long service life, and are regarded as an essential component of a low-carbon economy. Nowadays, LIBs are widely used in consumer electronics, as well as military and aviation products, and are the focus of significant research in the emerging field of energy materials. The cathode material is one of the most important parts of the LIB; its electrochemical performance plays an important role in the battery voltage, power/energy density, cycle life, and safety. LiFePO₄ is a superior cathode material compared to spinel manganite (LiMn₂O₄) and layered lithium nickel-cobalt-manganese oxide (LiMO₂ (M = Mn,

Co, Ni)), and LiFePO₄ has many advantages, such as excellent thermal stability, cycling performance, economic viability, and environmental friendliness. The theoretical diffusion coefficient of LiFePO₄ is 10^{-8} cm²·s⁻¹, which is sufficient for Li⁺ de-intercalation in nanoparticles. However, the one-dimensional transport channels are easily blocked by structural defects, resulting in a lower diffusion coefficient and poor rate performance. The electronic conductivity of LiFePO₄ is about 10^{-8} S·cm⁻¹, and this also limits the rate performance. Moreover, the low-temperature performance, low yield, and patent problems are also significant problems facing LiFePO₄. In contrast, the stability and cost are not significant limitations to more extensive applications; rather, it is the energy density and power density that must be improved. To meet the above demands, in-depth research on the factors affecting the electrochemical performance of LiFePO₄ is required. Many factors affect the electrochemical performance of LiFePO₄, such as the synthetic method, particle size, electrolyte environment, electrode structure, and temperature. Based on the current state of research into LiFePO₄, we have focused our review on the following three aspects: the characteristics of the nanoparticles, interface environment of the material, and the electrode structure. Finally, we summarize the relationship between the structure and electrochemical performance of LiFePO₄ cathode materials: (1) the bulk phase characteristics of the material (phase structure, doping, nanocrystallization, defects, and lithium-ion transport mechanism), (2) interface structure and interface reconstruction under different electrolyte environments, and (3) the electrode structure. Our conclusions have great significance for future research.

Key Words: Lithium Ion Battery; Cathode Materials; LiFePO4; Structure; Performance

Received: April 23, 2018; Revised: May 7, 2018; Accepted: May 7, 2018; Published online: May 10, 2018. *Corresponding author. Email: panfeng@pkusz.edu.cn.

This work was financially supported National Materials Genome Project (2016YFB0700600) and Guangdong Innovation Team Project (No. 2013N080). 国家材料基因组重点专项(2016YFB0700600)和广东省创新团队(No. 2013N080)资助

© Editorial office of Acta Physico-Chimica Sinica

锂电池磷酸铁锂正极材料的结构与性能相关性的研究进展

胡江涛,郑家新,潘锋* 北京大学深圳研究生院新材料学院,广东 深圳 518055

摘要: 磷酸铁锂(LiFePO4)具有环境友好、价格便宜、安全性能好等优点,作为正极材料已经广泛应用于国内的电动车动 力电池中;为了进一步提高电池的性能,需要对影响磷酸铁锂及同类材料(LiMPO4 (LMP);M=Fe、Mn、Co、Ni及这些 元素的混合)电化学性能的因素进行深入研究。本文从材料颗粒体相特征(相结构、掺杂、纳米化、缺陷和锂离子传输机 制)、界面结构及在不同的电解质环境下的界面重构和电极结构与锂电池性能的构效关系等方面进行总结,系统化的阐述 并总结了影响磷酸铁锂正极材料最新研究进展。

关键词: 锂离子电池; 正极材料; 磷酸铁锂; 结构; 性能 中图分类号: O646

1 引言

橄榄石结构过渡金属磷酸盐 LiMPO4 (LMP; M = Fe、Mn、Co、Ni; 理论容量 170 mAh·g⁻¹)被 Padhi 和 Goodenough¹发现后,一直是学术界和产 业界研究的热点,特别是磷酸铁锂(LiFePO4),具 有良好的热稳定性、低廉的成本(因为其所含元素 在地球的丰度较高)、无毒、较高的理论容量和较 好的放电平台 2-4, 已经投入商业应用, 是动力电 池首选的正极材料,其晶体结构如图1所示(Mn、 Co 和 Ni 拥有相同的晶体结构)。橄榄石结构 LiFePO₄,是聚阴离子框架结构,其结构基元是 LiO₆八面体、FeO₆八面体和 PO₄四面体,磷酸根 中强的 P-O 共价键在完全充电状态下稳定了氧 原子,避免其被氧化生产氧气而释放,该结构的存 在使得 LiFePO4 成为一种安全的正极材料。而且 由于其稳定的聚阴离子框架结构, LiFePO4的循环 性能非常好。LiFePO4的不足之处在于电子电导率 和离子电导率较低,分别为 10-9 S·cm-1 和 10-10- 10^{-15} cm²·s⁻¹, 作为正极材料应用于锂离子电池表 现出较差的倍率性能。除此之外 LiFePO4 的能量 密度也不高 5-8。因此,现阶段对该材料的研究主 要集中在提高能量密度和倍率性能方面 5,9-11, 或 者结合它的结构稳定优点来修饰高能量密度的层 状材料 12-14。

潘锋,1985年获北京大学化学学士 学位,1994年获英国 Strathclyde大 学博士学位。现任北京大学深圳研 究生院新材料学院院长、博导、"千 人计划"特聘专家。研究方向为清 洁能源及关键材料研发。国家材料

基因组重点专项首席科学家。

Fig. 1 The crystal structure of LiFePO4.

对 LiMnPO₄的研究兴趣来自于它的高充放电 电压平台(4 V),但是 LiMnPO4 面临比 LiFePO4 更 加严峻的问题,它的电子导电性比 LiFePO4 低四 个数量级¹⁵。在充放电过程中形成的 MnPO₄ 与 LiMnPO₄的晶格适配度很低,而且在 Mn³⁺形成之 后产生 Jahn-Teller 效应引起严重的晶格形变,影 响电化学性能 ^{16,17}。同时在充放电的过程中 Mn³⁺ 易发生歧化反应生成 Mn²⁺和 Mn⁴⁺, Mn²⁺极易溶 出,导致材料中的能量因子丢失¹⁸,同时 Mn⁴⁺具 有极强的氧化性很容易氧化分解电解液,导致电 化学性能下降 ¹⁸⁻²⁰。研究表明, LiFePO4 和 LiMnPO4 形成的固溶体 LiMn_vFe1-vPO4 也可以进 行正常的充放电,LiMn_vFe_{1-v}PO₄的晶格常数满足 Vegard 定律²¹, Fe³⁺-O-Mn²⁺之间的超交换相互作 用可产生 Mn³⁺/Mn²⁺在 4.1 V 的高电压 ²²。在 LiMn_vFe_{1-v}PO₄中,当Fe 元素出现在 Mn 附近位置 时, 会激活 Mn³⁺/Mn^{2+ 22}。和 LiFePO₄一样 LiMn_vFe_{1-v}PO₄的离子电导率和电子电导率都不 高,其倍率性能也很差。

LiNiPO4 和 LiCoPO4 都具有非常高的放电电压,分别可达到 5.2 和 4.8 V。LiCoPO4 是一种非常具有竞争力的电极材料,可以实现接近于

LiCoO₂的能量密度^{23,24}。但是 LiCoPO₄的电化学 稳定性和热稳定性非常差,即使对其界面进行处 理,几十次循环后容量衰减仍可达到 50% 25,26,其 衰减原因不仅仅在于低的电子电导率和离子电导 率²⁷, 与高电压下电解液的分解也有关系²⁸。循环 过程中 LiCoPO4 的锂脱嵌机制与 LiFePO4 和 LiMnPO₄不一样,它在循环过程中有中间相的形 成²⁹。上述种种原因成为 LiCoPO₄ 商业化应用的 障碍。为解决 LiCoPO4 面临的问题比较有效的方 法有元素替代 30,31 和界面修饰 32,33 等, 这些方法 在一定程度上可以提高离子和电子电导率,并提 高稳定性,但不能从根本上消除这些影响。 LiNiPO4在电化学过程中的问题很多,目前的研究 结果表明充电电压达到 5.2 V 时, 其至没有锂离子 的脱出^{34,35}。而且很难找到与LiNiPO4匹配的电解 液,即使有适合的,计算表明 LiNiPO4 和 NiPO4之 间的体积变化很大,这可能会导致结构的畸变进 而影响到材料的电化学稳定性³⁴。

综上,LMP 体系材料中最有商用价值且安全 廉价的是 LiFePO4 和 LiMnPO4 或者它们混合形成 的固溶体。为提高其电化学性能,就需要解决低电 子和离子电导率的问题。改善LiMn_vFe_{1-v}PO₄材料 导电性能的方法主要有包覆和掺杂两种 36。包覆 法是在磷酸铁锂材料表面通过物理或化学方法包 覆一层电子导体,以改善其电子传输性能。碳包覆 是一种常用的磷酸铁锂改性方法,碳材料的引入 一方面可增加粒子与粒子之间的导电能力,另一 方面还可以抑制合成过程中颗粒的融合与长大, 减小最终产物的粒径,同时还可以起到还原剂的 作用, 避免 Fe³⁺的生成, 这就实现了从多方面改善 磷酸铁锂类材料充放电性能的要求 1,36-39。但是过 多的碳包覆会降低最终产物中活性物质的比例和 振实密度,进而影响到材料的体积能量密度。离子 掺杂是改善磷酸铁锂导电性能的又一种有效方 法,在LiFePO4晶格中掺入高价离子40-42,可很大 程度上提高 LiFePO4 的电化学性能。解决离子电 导率低的问题,可以采取控制体相缺陷和缩短传 输路径的手段。锂离子在橄榄石材料体相中主要 沿着[010]方向一维扩散,扩散通道很容易被杂质 堵塞或缺陷打断,导致磷酸铁锂材料实际扩散系 数降低。所以通过设计 LiMn_vFe_{1-v}PO₄的材料结构 和降低 LiMn_vFe_{1-v}PO₄ 的缺陷浓度可以改善锂离 子扩散速率并提高电化学性能。颗粒纳米化可以 缩短锂离子的迁移路径,降低颗粒内部的传输时 间,提高倍率性能43。此时,磷酸铁锂电池倍率性 能的决速步不再是锂离子在颗粒内部的脱嵌,而

是锂离子或者电子在界面的传输速率起到决定性 作用^{3,44,45}。下面从磷酸铁锂材料体相晶体结构、 界面结构及在不同的电解质环境下的界面重构和 电极结构与锂电池性能的构效关系等方面进行总 结,系统化的阐述并总结了影响磷酸铁锂类正极 材料最新研究进展。

2 磷酸铁锂材料体相特征与锂电池性能的 关系

2.1 磷酸铁锂相结构

2001年, Amador 等⁴⁶将α-LiFePO4 置于极高 压力下, 晶体中原子位置发生了变化, 空间结构由 *Pnmb*变化成*Cmcm*,得到了β-LiFePO4。其晶体 结构如图2所示, 在β-LiFePO4中, 锂离子与周围 的氧原子配位形成畸变的四面体配位LiO4, 不同 的LiO4 四面体既不共点和边,也不共面, 不同锂 原子之间距离很远以至于不存在锂离子传输通 道。

2013 年研究者将不同相结构的磷酸铁锂作为 锂离子电池正极材料进行了较详细研究 48, 发现 与传统的 α -LiFePO₄ 相比, β -LiFePO₄ 的电子电导 率较高,但由于其极低的锂离子迁移率,它几乎没 有电化学活性的(在 2.0-4.2 V 下容量仅有 15 mAh·g⁻¹,且包碳后性能未得到明显提高),测得的 少量容量也是归于 β -LiFePO4 中混杂的少量 α -LiFePO₄的贡献。而且其充放电曲线与传统的 α-LiFePO4相比差距很大,磷酸铁锂在 3.4 V 左右特 有的充放电平台消失了,而是在充放电电压区间 内表现为斜线(这与 β-LiFePO4 锂离子迁移率低有 关),之后的研究也证实了 β-LiFePO4 锂离子迁移 率远低于 α-LiFePO4⁴⁹。北京大学潘锋课题组⁵⁰对 β -LiFePO₄进行了系统的研究,通过调控试验条 件,可以实现磷酸铁锂两种相结构的可控制备。随 后将 β -LiFePO₄ 与碳进行球磨引进的缺陷,最终产 物打通了 β -LiFePO4体相中锂离子的传输通道,实

图 2 β-LiFePO4的晶体结构示意图 ⁴⁷ Fig. 2 Schematics for structures of β-LiFePO4 ⁴⁷.

现了 128 mAh·g⁻¹的比容量 ⁴⁷。且其充放电曲线和 层状正极材料类似,磷酸铁锂的充放电平台消失 了,表现出固溶反应的电化学特性,如图 3 所示。 对 β -LiFePO4 进行了循环稳定性测试,循环 1000 次基本没有容量衰减,表现出了非常好的循环稳 定性。高容量 β -LiFePO4 的出现,以及其固溶充放 电行为,为实现高倍率 LiFePO4 电池性能带来了 可能性。通过调控合成路线,潘锋课题组首次在 LiMn0.5Fe0.5PO4 固溶纳米晶体材料里面发现嵌入 了亚纳米(2 nm 尺度) β -LiMn_xFe_{1-x}PO4 新相,它堵 塞锂离子的扩散通道,在快速充放电时会影响电 池的倍率性能 ⁵¹。

2.2 元素掺杂

元素掺杂是提高磷酸铁锂倍率性能的重要途 径,考虑到橄榄石结构的一维离子传输特性,离子 掺杂很有可能在提高电子导电性的同时降低体系 的离子电导率 52,因此在掺杂过程中一定要兼顾 离子和电子的输运特性。掺杂通常分为四类,分别 是金属铁位掺杂、金属锂位掺杂、铁锂位共掺杂以 及非金属掺杂。关于金属锂位掺杂,研究比较深入 的是 MIT 的 Chiang 等课题组 37, 他们在 LiFePO4 晶格中掺入高价离子,形成具有阳离子缺陷的 $Li_{1-x}M_xFePO_4$ [M = Mg²⁺, Al³⁺, Ti⁴⁺, Nb⁵⁺, W⁶⁺ 等],使其电导率提高8个数量级左右,达到10-2 S·cm⁻¹,极大地提高了LiFePO₄的电化学性能。上 述过程提高电子电导率的重要原因是由于 Li 或 Fe 的缺陷出现了 Fe 的混合价,形成了 p 型半导体。 中国科学院物理研究所施思齐等 53 采用第一性原 理计算方法,用一定量的 Cr³⁺取代 LiFePO₄ 中的 Li,研究了 Cr³⁺对 LiFePO₄ 电子结构的影响,同时 从理论上解释了 Cr3+掺杂提高 LiFePO4 电导率具 体原因。之后, 倪江锋等 54 采用不同的方法合成

Fig. 3 Charge/discharge curves of β -LFPC with different ball-milling time ⁴⁷.

From 0 h (bLFPC-0) to 10 h (bLFPC-10), respectively.

了两种 Cr3+掺杂 LiFePO4, 证明了 Cr3+掺杂对于锂 离子输运的重要作用。铁位掺杂也有相关的报道, Meethong 等 55,56 开展了一系列工作证明高价掺杂 对于倍率性能的作用。在 Fe 位还有 Na⁺掺杂, Na 的掺杂同时提供了氧空位 57。吴宇平课题组 58 在 Fe 位进行了 Zn²⁺掺杂,掺杂元素的"pillar"效应 为锂离子的传输提供了更大的空间,提高了电子 和离子电导率。铁锂位共同掺杂比较重要的工作 是 Wang 等 59 进行的 Mo 元素掺杂,它同时占据 了两个金属位点,结果显示 LiFePO4 的导电性有 所改善。非金属掺杂的工作有很多,比如说张中太 课题组⁶⁰采用的 N、S、Cl 和 F 等掺杂,杨勇课题 组⁶¹进行的Ge、Sn、Se、Te 或 B 掺杂,都起到 了提高导电性的作用。LiFePO4中的金属位点包括 锂位和铁位,但是掺杂元素的准确占位情况还不 够明确,存在很多争议。Islam 课题组⁶²通过模拟 的方法总结了二价到五价金属元素掺杂可能存在 的掺杂位点,当然也存在一些例外的情况。

2.3 颗粒纳米化

LiFePO4 颗粒纳米化是解决锂离子传输问题 的有效手段。计算 62 和实验 63 证明 LiFePO4 的传 输主要路径是沿着[010]方向的一维传输,其本征 扩散系数大约为 10-8-10-12 cm²·s^{-1 64}。根据 Fick 扩 散定律,颗粒纳米化可缩短锂离子传输路径减少 传输时间从而提高传输效率。纳米化后锂离子在 颗粒中的传输距离(锂离子是沿着[010]方向 1D 传 输,在该方向的 30 nm 距离中传输小于 1 s),并且 颗粒与电解液的接触面积增加,提高了电化学反 应面积,从而提高锂离子进出颗粒的速度;颗粒纳 米化也增加了与导电颗粒的接触,提高了电子输 运特性。总之,LiFePO4颗粒纳米化后可以大大提 高电池的倍率性能⁶⁵。例如,通过控制 LiFePO4 颗 粒的生长方向, 缩短[010]上的传输距离提高锂离 子传输速率,亦可实现高倍率性能。Golden 等⁶⁶ 通过分子动力学模拟的方法证明了如果控制晶体 沿着[100]方向生长,会增强离子在[010]方向上的 传输。Huang 等⁶⁷ 通过水热的方法合成了两种生 长方向的 LiFePO₄,实验证明 b 方向传输路径缩 短, 锂离子扩散速率会增大。

2.4 体相缺陷

LiFePO4颗粒纳米化后,其传输的微观机制会 发生改变,例如 Amin 等 ⁶⁸研究了 150 °C 条件下 LiFePO4 的锂离子扩散系数,结果为 $10^{-9}-10^{-10}$ cm²·s⁻¹,同时也测定了 a、b 和 c 方向上的扩散系 数,这个时候三个方向上的各向异性表现的不是 那么明显,其传输模式已经从传统的 1D 传输扩展 到了 2D 和 3D。1D 的锂离子传输模式有很大的缺 点, 传输的过程中锂离子很容易被通道内的缺陷 所阻挡, 但是如果是 2D 或者 3D 传输通道, 锂离 子可以利用缺陷实现多维传输。当反位量足够大 的时候, 就容易实现多维离子传输, 这时候磷酸铁 锂的两相变化就成为了固溶反应机制, 这样有利 于实现高的倍率性能。如果想让 1D 通道上被堵塞 的锂离子继续传输, 需要临近的 1D 维通道位置存 在空位, 形成网络促进传输, 如果是完美的晶体结 构, 3D 锂离子传输是不可能实现的。一般情况下 我们遇到的缺陷类型包括: Li⁺在 Fe²⁺位、Fe²⁺在 Li⁺位、Fe²⁺空位等。Ceder 课题组 ⁶⁹研究了粒径、 反位和容量之间的关系, 如图 4 所示。

对颗粒电化学性能影响最大的是 Fe²⁺/Li⁺反 位缺陷,此时锂离子的传输通道被堵塞,影响到锂 离子的正常脱嵌,表现出差的倍率性能,当缺陷含 量较多的时候,会导致一部分锂离子失去电化学 活性,导致容量下降。为了实现不错的 LiFePO4 倍 率性能,相关课题组采用了很多种方法来抑制材 料中的反位现象,比如说 Guo 等⁷⁰合成的材料仅 有小于 0.3%的反位量,因此表现出了不错的电化 学性能。但是缺陷的含量和电池的电化学性能不 是线性的正相关关系,已经有研究者证明,当 Fe²⁺/Li⁺反位缺陷达到 2%以上时, 锂离子的传输通 道就会从1D扩展到2D或者3D^{3,69},其倍率性能 不会受到太大影响, 甚至会比同尺寸完美晶体的 性能要好。潘锋课题组 51 设计了合适的合成流程 得到了高 Fe²⁺/Li⁺反位量 (5.27%)的 α-LiMn_{1-v}Fe_vPO₄材料,促使锂离子的 1D 传输通道 扩展到 2D 和 3D, 实现了非常好的倍率性能。反 位量增加可以使橄榄石结构的两相反应机制成为 了固溶反应机制,为倍率性能提高起到了很大作 用 71。

2.5 锂离子传输机理

磷酸铁锂中锂离子的传输机制探讨一直是重要的研究课题,比较成熟的模型是 Goodenough 等¹ 提出的 Shriking-shell 模型和 Andersson 等⁷²提出 的 Mosaic 模型。Shriking-shell 模型⁷³主要是指充 放电过程中会形成 LiFePO4/FePO4 两相界面,该界 面会随着锂的脱嵌发生动态变化。

Mosaic 模型是指活性材料内部存在多个电化 学活性中心,两相界面在活性中心同时产生,然后 以活性中心为核心向外扩散。考虑到锂离子脱嵌 的各向异性问题, Newman 等⁷⁴对 Shriking-shell 模型进行了改进,即在富锂和贫锂的两种状态下 存在 LiaFePO4 和 Li1-BFePO4 这两种相。Delmas 等 75 结合高分辨透射电镜,提出了 Domino-cascade 模 型,认为新相形核后,其生长速率将远远超过新相 的形核速率, 锂离子沿两相界面的脱嵌可以像多 米诺骨牌一样瞬间完成,不需要借助外力。目前对 于橄榄石结构正极材料的锂离子脱嵌机理还没有 统一的认识,因此近几年对该体系锂离子传输机 制的研究一直没有停下。Tang 等⁷⁶运用原位硬 X 射线波谱成像技术和相场模型揭示了锂离子的混 合传输机制,并讲到这是由于表面反应和锂离子 不同方向扩散的相互作用引起的。William 等⁷⁷用 X 射线显微成像技术揭示了锂离子电池在循环过 程中电极内部颗粒成分和反应速率的纳米级变化 过程。锂离子的脱嵌机制一直处于完成的过程中, 同时 LixFePO4 体系中也有很多新的发现。Wang 课 题组 78 实时观察到锂离子在磷酸铁锂颗粒内部的 不均匀插入行为,同时还发现了锂离子在颗粒内 部分布情况的瞬间反转现象,并通过计算给出了 解释。

3 磷酸铁锂界面结构与锂电池性能的关系 3.1 界面包覆

纳米化的 LiMnyFe_{1-y}PO4 并不能改变其较低 的电子导电性(< 10⁻⁹ S·cm⁻¹),这也是限制其倍率 性能的重要因素,解决上述问题的一种途径就是 界面包覆导电层,例如导电与导离子介质包覆、离 子导体包覆、惰性介质包覆等。当颗粒的导电性解 决之后,影响材料电化学性能的决速步就变成了 锂离子在颗粒和电解液界面的传输了。已有很多 文献报道,界面传输对于材料的倍率性能起到了 很大的作用 ^{79,80}。

导电介质中常用的包覆物质有碳和导电聚合物,包覆处理之后可以改善颗粒之间的电接触,提高导电能力³⁸。关于碳包覆层,它的物理特征对于

最终的电化学性能有很大的影响,比如说碳层的 含量和碳层厚度⁸¹、碳层的石墨化程度⁸²、碳的形 态和分布⁸³、碳表面积和多孔性⁸⁴以及碳前驱体 的种类 85,86 等等。在碳包覆的过程中要考虑到上 述因素,这样得到的包覆层会表现出很好的导电 性。颗粒纳米化在缩短传输路径提高倍率性能的 同时也会引起一系列的问题,例如低的振实密度 导致低的能量密度 87, 大的比表面积可能会促进 金属离子的溶解⁸⁸,可能会增强催化副反应⁸⁹等。 面对上述问题,潘锋课题组⁹⁰利用 LiFePO4 界面 Fe 的对称性破缺(在体相中 Fe 是以 FeO6 八面体配 位的对称性,但在界面少了最外层的 O 成为对称 性破缺的 FeO₅ 的五面体),利用-CO⁻与界面对称 性破缺的 FeO₅的 Fe 配位形成 Fe-O-C, 重构了 FeO₅(OC-)界面对称性的特殊碳包覆方式(该 C 链接成有缺陷的氧化石墨烯,其外层的导电性好 的多层类石墨烯),使得该界面因为 Fe-O-C 中 O⁻提供的额外负电子可以多存储 Li 离子, 实现了 超过理论容量的电化学性能,该超容量的大小正 比于纳米颗粒比表面积的大小。Sun 等 91 也同样 通过对 LiFePO4 界面修饰实现了 LiFePO4 超容量 的结果。离子导体的相关研究也很多,它们在界面 提高了磷酸铁锂材料的离子传输特性和界面稳定 性。Li₃PO₄在表面的包覆也起到了非常好的效果, 很大程度上提升了倍率性能 37。特别是玻璃态的 Li₃PO₄, 其具备很高的离子电导率 ⁹²。惰性介质包 覆的种类有很多,基本的作用是稳定界面,进而提 高电化学活性。例如惰性介质 AlF3 与 LiFePO4 有 很好的适配性,不仅可以减少材料的转移阻抗,还 可以提高电化学性能和表面结构稳定性 93。

3.2 界面环境

Gaberscek 等⁷⁹证明 LiFePO4 电极材料周围的 电解质离子和溶剂等环境因素要比导电性物质的 包覆作用大,因为离子界面的传输速度很慢。也就 是说在颗粒纳米化之后,倍率性能的决速步是界 面反应而不是体相离子传输。电解液在电化学过 程中扮演着重要角色,不仅仅体现在溶液中离子 的传输,在界面溶剂化的 Li 离子要脱去溶剂实现 Li 离子脱嵌,因此脱溶剂化过程也是很重要的作 用。目前用到的电解液主要是有机电解液和无机 水系电解液,对与水系电解液的研究越来越多^{94,95}, 因为水电解质可以阻止燃烧具有高安全性的特 点,是一种有可能代替有机电解液的电解液。吴宇 平课题组⁹⁶在硫酸锂水性电解液中对大孔磷酸铁 锂电极进行了电化学测试,该电池体系实现了很 高的能量密度。潘锋和吴宇平课题组合作⁵在有机

无机两种电解液体系下测试了磷酸铁锂颗粒电化 学特性,通过对比发现水系下的倍率性能(可以实 现6秒钟实现50%以上的充放电)比有机体系下的 性能好很多。他们通过理论计算对两种电解液环 境下锂离子的脱嵌锂机制进行了研究,发现 LiFePO4 与水溶液接触后通过 H2O 与界面 Li 的界 面对称性破缺(界面的LiO3)重构了LiO3(H2O)3的八 面体,形成了一层既像 LiFePO4 体相对称性又像溶 液锂离子溶剂化(Li(H2O)4)的配位环境,称为 Janus 水合固液界面, 这将降低锂离子在界面处锂离子在 界面的溶剂化和去溶剂化的能全,从而的锂离子在 充放电时的脱嵌能垒,有利于锂电池的快速充放电 过程(图 5)。潘锋课题组 97 进一步开发 Li 离子在 固液界面的扩散性质的方法,例如开发了用脉冲 法研究,发现充电时有颗粒之间互充电,以及开发 了 LiFePO4 单纳米颗粒(把单个纳米颗粒分散在碳 纳米管的导电网络中, 消除纳米颗粒界面的相互 作用引发颗粒之间互相充放电)锂电池电化学测 试体系 98, 首次揭示了在锂电池材料在电解质中 锂离子的扩散与界面反应的动力学方程(ka = $A \exp(-E_a/kT)$, k_a 是速率常数, A 是指前因子, E_a 是活化能)的活化能与界面结构的相关性及指前 因子和锂离子溶剂化和脱溶剂化的关系,并解释 了水和有机这两类电解液环境下锂离子界面反应 常数差异性的原因。上述工作系统的阐述了 LiFePO4 锂离子电池在水系电解液中倍率性能表 现非常好的原因是形成的 Janus 水合固液界面使得 Li 离子脱溶剂化能低, 这对我们制备高倍率锂离 子电池有重要指导意义。

Li, green; Fe, gray; P, purple; O, red; C, brown; H, white.

4 磷酸铁锂电极结构与锂电池性能的关系

从电池设计和制造工程角度考虑,电极结构 的设计与优化对电化学性能也有重要的影响,例 如电极厚度、空间结构和多孔性等。最为熟知的提 高倍率性能的方法是调节电极中活性材料、导电 炭黑和粘结

剂的比例,当炭黑的比例增高时,倍率性能会 有很大提升⁹⁹,因为形成了更加健全的导电网络, 降低了系统阻抗¹⁰⁰,可缓解磷酸铁锂颗粒低电导 率的问题,但同时也降低的电池的体积和重量的 能量密度。当然,导电炭黑的物理特征对电化学性 能的影响也比较大,潘锋课题组通过选择合适的 导电炭黑,发现活性材料和"软"炭黑的大面积软 接触,可以大大减弱了极化现象并提高了电化学 性能¹⁰¹。

关于电极厚度与电池性能关系的研究非常 多。Zhang 等¹⁰²制备了不同物质载量 LiFePO₄, 研究了电极厚度和倍率性能的关系,发现电极越 厚倍率性能越差,同时其功率密度也随之降低。 Denis 等¹⁰³发现 LiFePO₄的电极厚度增加会增加 电极阻抗和降低锂离子在电解液中的传导速率, 影响倍率性能。有机电解液本身具有安全隐患,所 以使用水系电解液的研究非常多,这样即解决安 全问题,同时降低了成本。Guyomard 等¹⁰⁴在水 系电解液体系中研究了电极厚度对电化学性能的 影响,并寻找了水系电解液中实现高能量密度的 方法。

为提高能量密度而增加电极厚度,一般来讲 这不利于锂电池实现高倍率性能,但也有解决矛 盾的办法,不仅可以增加厚度提高能量密度也可 以表现出不错的电化学性能。Seznec 等¹⁰⁵使用 NaCl 作为模板,制造了非常厚的 LiFePO4 多孔电 极, 增大了电解液和电极的接触面积, 促进了锂离 子的传输,不仅提高了能量密度,同时也实现了很 好的电化学性能。Chen 等¹⁰⁶通过使用不同规格的 尿素甲醛树脂作为模板,得到了毫米级的三维多 孔 LiFePO4 电极,实现了优越的倍率性能和更高 的能量密度。潘锋课题组¹⁰⁷通过 3D 打印的方法 实现了 LiMn_{0.21}Fe_{0.79}PO₄@C 超高的倍率性能,不 仅研究了厚度对倍率性能的影响,同时通过多物 理场模拟的方法探究了孔隙率对磷酸铁锰锂电极 倍率性能的影响,提出通过设计具有大的"有效孔 空隙率"的电极可以大大提高电池的高倍率充放 电的性能。Lestriez 等¹⁰⁸ 通过喷墨打印的方法制 备了薄且多孔的电极,实现了非常好的倍率性能。 Lewis 等¹⁰⁹ 通过 3D 打印的方法组装了微电池,

在内部为正负极互插式 3D 结构,充分利用了空间,同时也得到了不错的功率密度。

5 结论

我国对新能源汽车的政策支持为动力锂电池 的未来发展营造了非常好的氛围,这也对磷酸铁 锂正极材料产业的快速发展起到了促进作用。磷 酸铁锂正极材料的高安全性、高循环稳定性以及 无污染等优势,使之成为动力电池的首选材料已 经无需置疑,如何进一步提高锂电池的能量密度、 功率密度是扩大其应用范围的必经之路,产业界 和学术界应该以之为奋斗目标进行深刻探讨。

本文对影响锂离子电池磷酸铁锂正极材料 电化学性能的因素进行了总结,从颗粒体相特征 (相结构、掺杂、纳米化、缺陷和锂离子传输机制) 出发,拓展到颗粒界面环境研究,最后到电池电极 结构的设计,进行了系统化的分析,为我们设计高 倍率锂离子电池提供了参考。如果想要实现高的 能量密度和功率密度,应该如何设计材料、如何选 取电解液、如何设计电极,本文为我们提供了重要 参考。

材料设计方面,我们可以在界面进行对称 性破缺的重构,使得界面储存额外更多的Li离子。 纳米材料颗粒的尺度越小,表面积越大,额外储Li 超容量就越大,可以把这个机理应用于改良现有 磷酸铁锂材料,以提升其容量。

电解液选取和改良方面,从水系电解液能实现超快速充放的机理得到启发,电池充放电的倍率性能与锂离子脱溶剂化的过程和固液界面结构有紧密的关系,电极材料在界面对称性会产生破缺,电解液溶剂要补上这个缺位,一般是通过溶剂的极性基团与界面的过渡金属配位并与Li离子结合,像H2O这种体积小的分子还能在磷酸铁锂界面的Fe配位,并与Li离子结合形成既像晶体中Li-O八面体又像溶剂化的Li-O四面体的Janus界面,使得Li离子的界面溶剂化/脱溶剂化都变得容易,进而实现快速的界面动力学。因此,电解液中添加不同功能和大小的溶剂分子重构界面,可以提高工具的影速率和界面的稳定性。这不仅可以提高功率密度,而且可以保证电池的安全性。

电极结构设计方面,如何设计电池电极结构 能同时提高电池的能量密度和功率(正比于倍率) 密度是一个巨大的挑战,我们知道通常要提高电 池单位体积的能量密度就要把电极的极片要压得 密实并且极片要做的很厚,这样就会引起严重的 浓差极化,导致 Li 离子从电解液到电极材料内部 的脱嵌速率降低。从 3D 打印极片研究影响电池倍 率性能的机理可以得到启发,设计增加"有效孔隙 率"的电极是一个有效的途径,可以在三维结构上 进行努力,建立快速离子传输的通道,在保证能量 密度不损失的情况下实现电极材料和电解液的最 大接触。

除此之外,要提高磷酸铁锂材料性能并应用 于电动车动力电池,同时需要兼顾材料的合成流 程、电池组的设计以及对电极的选择等,这些对最 终的能量密度和功率密度性能表现都有非常大的 影响,想要实现大幅度的性能提升,还需要进一步 深入地研究机理,优化影响电池性能的各个部分。

References

- Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188. doi: 10.1149/1.1837571
- (2) Wang, J.; Yang, J.; Zhang, Y.; Li, Y.; Tang, Y.; Banis, M. N.; Li, X.; Liang, G.; Li, R.; Sun, X. Adv. Funct. Mater. 2013, 23, 806. doi: 10.1002/adfm.201201310
- (3) Malik, R.; Abdellahi, A.; Ceder, G. J. Electrochem. Soc. 2013, 160, A3179. doi: 10.1149/2.029305jes
- (4) Wang, J.; Yang, J.; Tang, Y.; Liu, J.; Zhang, Y.; Liang, G.; Gauthier,
 M.; Chen-Wiegart, Y. C.; Norouzi Banis, M.; Li, X.; *et al. Nat. Commun.* 2014, *5*, 3415. doi: 10.1038/ncomms4415
- (5) Zheng, J.; Hou, Y.; Duan, Y.; Song, X.; Wei, Y.; Liu, T.; Hu, J.; Guo,
 H.; Zhuo, Z.; Liu, L.; *et al. Nano Lett.* **2015**, *15*, 6102.
 doi: 10.1021/acs.nanolett.5b02379
- (6) Wu, R.; Xia, G.; Shen, S.; Zhu, F.; Jiang, F.; Zhang, J. RSC Adv. 2014, 4, 21325. doi: 10.1039/c4ra00370e
- Martha, S. K.; Grinblat, J.; Haik, O.; Zinigrad, E.; Drezen, T.; Miners,
 J. H.; Exnar, I.; Kay, A.; Markovsky, B.; Aurbach, D. *Angew. Chem.-Int. Edit.* 2009, 48, 8559. doi: 10.1002/anie.200903587
- (8) Ravet, N.; Abouimrane, A.; Armand, M. Nat. Mater. 2003, 2, 702.
 doi: 10.1038/nmat1009a
- Wang, H.; Wang, R.; Liu, L.; Jiang, S.; Ni, L.; Bie, X.; Yang, X.; Hu, J.; Wang, Z.; Chen, H.; *et al. Nano Energy* **2017**, *39*, 346.
 doi: 10.1016/j.nanoen.2017.07.001
- (10) Wang, Z.; Tan, R.; Wang, H.; Yang, L.; Hu, J.; Chen, H.; Pan, F. Adv. Mater. 2018, 30, 1704436. doi: 10.1002/adma.201704436
- (11) Fei, H.; Peng, Z.; Yang, Y.; Li, L.; Raji, A. R.; Samuel, E. L.; Tour, J. M. Chem. Commun. 2014, 50, 7117. doi: 10.1039/c4cc02123a
- (12) Wu, Z.; Ji, S.; Liu, T.; Duan, Y.; Xiao, S.; Lin, Y.; Xu, K.; Pan, F. Nano letters 2016, 16, 6357. doi: 10.1021/acs.nanolett.6b02742
- (13) Kim, S. B.; Lee, K. J.; Choi, W. J.; Kim, W. S.; Jang, I. C.; Lim, H. H.; Lee, Y. S. *J. Solid State Electr*. **2010**, *14*, 919. doi: 10.1007/s10008-009-0873-7

- (14) Kim, W. S.; Kim, S. B.; Jang, I. C.; Lim, H. H.; Lee, Y. S. J. Alloys Compd. 2010, 492, L87. doi: 10.1016/j.jallcom.2009.12.034
- (15) Delacourt, C.; Delacourt, C.; Laffont, L.; Bouchet, R.; C. Wurma, J.
 B. L.; Morcrette, M.; Tarascon, J. M.; Masquelier, C. J. Electrochem. Soc. 2005, 152, A913. doi: 10.1149/1.1884787
- (16) Oh, S.M.; Myung, S. T.; Choi, Y. S.; Oh, K. H.; Sun, Y. K. J. Mater. Chem. 2011, 21, 19368. doi: 10.1039/c1jm13889h
- (17) Yamada, A.; Takei, Y.; Koizumi, H.; Noriyuki Sonoyama, A.; Kanno,
 R.; Itoh, K.; And, M. Y.; Kamiyama, T. *Chem. Mater.* **2006**, *18*, 804.
 doi: 10.1021/cm051861f
- (18) Zhuo, Z.; Hu, J.; Duan, Y.; Yang, W.; Pan, F. Appl. Phys. Lett. 2016, 109, 587. doi: 10.1063/1.4958639
- (19) Thackeray, M. M.; Shaohorn, Y.; Kahaian, A. J.; Kepler, K. D.;
 Skinner, E.; Vaughey, J. T.; Hackney, S. A. *Electrochem. Solid ST* 1998, *1*, 7. doi: 10.1149/1.1390617
- (20) Su, Y.; Cui, S.; Zhuo, Z.; Yang, W.; Wang, X.; Pan, F. ACS Appl. Mater. Inter. 2015, 7, 25105. doi: 10.1021/acsami.5b05500
- (21) Xie Y.; Ma L. J. Centr. South Univ. 1985, 8, 5. [谢佑卿; 马柳莺. 中 南矿冶学院学报 1985, 8, 5.]
- (22) PARK, J. K., Principles and Applications of Lithium Secondary Batteries; China Machine Press: Beijing, 2014; pp. 44–47; translated by Zhang, Z.; Du, K.; Ren, X. [PARK, J. K. 锂二次电池原理与应 用. 张治安, 杜柯, 任秀, 译. 北京: 机械工业出版社, 2014: 44– 47.]
- Rabanal, M. E.; Gutierrez, M. C.; Garcia-Alvarado, F.; Gonzalo, E.
 C.; Dompablo, A. D. J. Power Sources 2006, 160, 523.
 doi: 10.1016/j.jpowsour.2005.12.071
- (24) Lloris, J. M.; Vicente, C. P. R.; Tirado, J. L. *Electrochem. Solid St.* 2002, 5, A234. doi: 10.1149/1.1507941
- (25) Li, H. H.; Jin, J.; Wei, J. P.; Zhou, Z.; Yan, J. *Electrochem. Comm.* **2009**, *11*, 95. doi: 10.1016/j.elecom.2008.10.025
- Wang, F.; Yang, J.; Nuli, Y.; Wang, J. J. Power Sources 2010, 195, 6884. doi: 10.1016/j.jpowsour.2010.04.071
- (27) Wolfenstine, J.; Read, J.; Allen, J. L. J. Power Sources 2007, 163, 1070. doi: 10.1016/j.jpowsour.2006.10.010
- (28) Aurbach, D. ECS Meeting 2013, 53, 134.
- (29) Nakayama, M.; Goto, S.; Uchimoto, Y.; Wakihara, M.; Kitajima, Y. *Chem. Mater.* 2004, *16*, 3399. doi: 10.1021/cm049230t
- (30) Singh, V.; Gershinsky, Y.; Kosa, M.; Dixit, M.; Zitoun, D.; Major, D.
 T. Phys. Chem. Chem. Phys. 2015, 17, 31202.
 doi: 10.1039/c5cp04871k
- (31) Allen, J. L.; Jow, T. R.; Wolfenstine, J. J. Power Sources 2011, 196, 8656. doi: 10.1016/j.jpowsour.2011.06.057
- (32) Cherkashinin, G.; Sharath, S. U.; Jaegermann, W. Adv. Energy Mater.
 2017, 7, 1602321. doi: 10.1002/aenm.201602321
- (33) Kreder, K. J.; Manthiram, A. ACS Energy Lett. 2016, 2, 64.

doi: 10.1021/acsenergylett.6b00496

- (34) Deniard, P.; Dulac, A. M.; Rocquefelte, X.; Grigorova, V.; Lebacq,
 O.; Pasturel, A.; Jobic, S. J. Phys Chem. Solids 2004, 65, 229.
 doi: 10.1016/j.jpcs.2003.10.019
- (35) Okada, S.; Sawa, S.; Egashira, M.; Yamaki, J. I.; Tabuchi, M.;
 Kageyama, H.; Konishi, T.; Yoshino, A. J. Power Sources 2001, s97– 98, 430. doi: 10.1016/S0378-7753(01)00631-0
- (36) Zhou, F.; Kang, K.; Maxisch, T.; Ceder, G.; Morgan, D. Solid State Commun. 2004, 132, 181. doi: 10.1016/j.ssc.2004.07.055
- (37) Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123.
 doi: 10.1038/nmat732
- (38) Wang, J.; Sun, X. Energy Environ. Sci. 2012, 5, 5163.
 doi: 10.1039/c1ee01263k
- (39) Ravet, N.; Chouinard, Y.; Magnan, J. F.; Besner, S.; Gauthier, M.;
 Armand, M. J. Power Sources 2001, s97–98, 503.
 doi: 10.1016/S0378-7753(01)00727-3
- (40) Chung, S. Y.; Chiang, Y. M. Electrochem. Solid St. 2003, 6, A278.
 doi: 10.1149/1.1621289
- (41) Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123.
 doi: 10.1038/nmat732
- (42) Meethong, N.; Kao, Y. H.; Speakman, S. A.; Chiang, Y. M. Adv. Funct. Mater. 2009, 19, 1060. doi: 10.1002/adfm.200801617
- (43) Zaghib, K.; Guerfi, A.; Hovington, P.; Vijh, A.; Trudeau, M.; Mauger,
 A.; Goodenough, J. B.; Julien, C. M. J. Power Sources 2013, 232,
 357. doi: 10.1016/j.jpowsour.2012.12.095
- (44) Liu, J.; Kunz, M.; Chen, K.; Tamura, N.; Richardson, T. J. J. Phys. Chem. Lett. 2010, 1, 2120. doi: 10.1021/jz100634n
- (45) Gaberscek, M.; Küzma, M.; Jamnik J., *Phys. Chem. Chem. Phys.* 2007, 9, 1815. doi: 10.1039/b618822b
- (46) Garcíamoreno, O.; Alvarezvega, M.; Garcíaalvarado, F.; Garcíajaca,
 J.; Gallardo Amores; M. L. S.; U. Amador. *Chem. Mater.* 2001, *13*, 1570. doi: 10.1021/cm000596p
- (47) Guo, H.; Song, X.; Zhuo, Z.; Hu, J.; Liu, T.; Duan, Y.; Zheng, J.;
 Chen, Z.; Yang, W.; Amine, K.; *et al. Nano Lett.* **2016**, *16*, 601.
 doi: 10.1021/acs.nanolett.5b04302
- (48) Zeng, G.; Caputo, R.; Carriazo, D.; Luo, L.; Niederberger, M. Chem. Mater. 2014, 44, 3399. doi: 10.1021/cm400995g
- (49) Ashton, T. E.; Laveda, J. V.; MacLaren, D. A.; Baker, P. J.; Porch, A.;
 Jones, M. O.; Corr, S. A. J. Mater. Chem. A 2014, 2, 6238.
 doi: 10.1039/c4ta00543k
- (50) Guo, H.; Ping, H.; Hu, J.; Song, X.; Zheng, J.; Pan, F. J. Mater. Chem. A 2017, 5, 14294. doi: 10.1039/c7ta03369a
- Hu, J.; Xiao, Y.; Tang, H.; Wang, H.; Wang, Z.; Liu, C.; Zeng, H.;
 Huang, Q.; Ren, Y.; Wang, C.; *et al. NanoLett.* **2017**, *17*, 4934.
 doi: 10.1021/acs.nanolett.7b01978
- (52) Ouyang, C. Y.; Shi, S. Q.; Wang, Z. X.; Li, H.; Huang, X. J.; Chen, L. Q. J. Phys. Condens. Matter 2004, 16, 2265.

doi: 10.1088/0953-8984/16/13/007

- (53) Shi, S.; Liu, L.; Ouyang, C.; Wang, D. S.; Wang, Z.; Chen, L.; Huang,
 X. *Phys. Rev. B* 2003, *68*, 195108. doi: 10.1103/PhysRevB.68.195108
- (54) Ni, J.; Zhou, H.; Chen, J.; Su, G. Acta Phys. -Chim. Sin. 2004, 20, 582. [倪江峰,周恒辉,陈继涛,苏光耀. 物理化学学报, 2004, 20, 582.] doi: 10.3866/PKU.WHXB20040606
- (55) Meethong, N.; Kao, Y. H.; Carter, W. C.; Chiang, Y. M. *Chem.Mater.* 2009, *22*, 1088. doi: 10.1021/cm902118m
- Meethong, N.; Huang, H. Y. S.; Speakman, S. A.; Carter, W. C.; Chiang, Y. M. Adv. Funct. Mater. 2007, 17, 1115. doi: 10.1002/adfm.200600938
- (57) Axmann, P.; Stinner, C.; Wohlfahrtmehrens, M.; Mauger, A.; Gendron, F.; Julien, C. M. Chem. Mater. 2009, 21, 1636. doi: 10.1021/cm803408y
- (58) Liu, H.; Cao, Q.; Fu, L. J.; Li, C.; Wu, Y. P.; Wu, H. Q. Electrochem. Commun. 2006, 8, 1553. doi: 10.1016/j.elecom.2006.07.014
- (59) Wang, Z.; Sun, S.; Xia, D.; Chu, W.; Zhang, S.; Wu, Z. J. Phys. Chem. C 2008, 112, 17450. doi: 10.1021/jp801497z
- (60) Zhang, Z.; Luo, S.; Tang, Z.; Lu, J.; Yan, J. Prepn Process of Oxygen Place Doped Lithium Ferric Phosphate Powder. 200510112562.6, 2005-10-11. [张中太,罗绍华,唐子龙,卢俊彪,闫俊萍. 氧位掺 杂型磷酸铁锂粉体的制备方法:中国, 200510112562.6 [P], 2005-10-11.]
- (61) Yang, Y.; Zhang, Z.; Zhu, C. LiFePO₄ Cathode Material based on P Site Doped and Preparation Method Thereof. 200710008713, 2007-03-16. [杨勇, 张忠如, 朱昌宝. 基于磷位掺杂的磷酸铁锂正极材 料及其制备方法: 中国, 200710008713 [P], 2007-03-16.]
- (62) Islam, M. S.; Driscoll, D. J.; Fisher, C. A. J.; Slater, P. R. Chem. Mater. 2005, 17, 5085. doi: 10.1021/cm050999v
- (63) Nishimura, S. I.; Kobayashi, G.; Ohoyama, K.; Kanno, R.; Yashima,
 M.; Yamada, A. *Nat. Mater.* 2008, *7*, 707. doi: 10.1038/nmat2251
- (64) Morgan, D.; Van der Ven, A.; Ceder, G. *Electrochem. Solid St.* 2004, 7, A30. doi: 10.1149/1.1633511
- (65) Liu, H.; Strobridge, F. C.; Borkiewicz, O. J.; Wiaderek, K. M.; Chapman, K. W.; Chupas, P. J.; Grey, C. P. *Science* 2014, 344, 1252817. doi: 10.1126/science.1252817
- (66) Zhang, P.; Zhang, D.; Yuan, Q.; Ren, X.; Golden, T. D. *Cheminform.* **2011**, *13*, 1510. doi: 10.1016/j.solidstatesciences.2011.05.012
- (67) Wang, Y. Q.; Zhang, D. Y.; Chang, C. K.; Deng, L.; Huang, K. J.
 Mater. Chem. Phys. 2014, *148*, 933.
 doi: 10.1016/j.matchemphys.2014.08.071
- (68) Chen, D. P.; Maljuk, A.; Lin, C. T. J. Cryst. Growth 2005, 284, 86. doi: 10.1016/j.jcrysgro.2005.06.024
- (69) Malik, R.; Burch, D.; Bazant, M.; Ceder, G. Nano Lett. 2010, 10, 4123. doi: 10.1021/nl1023595
- (70) Zou, Y.; Chen, S.; Yang, X.; Ma, N.; Xia, Y.; Yang, D.; Guo, S. Adv. Energy Mater. 2016, 6, 1601549. doi: 10.1002/aenm.201601549

- (71) Whittingham, M. S. Chem. Rev. 2014, 114, 11414.
 doi: 10.1021/cr5003003
- (72) Andersson, A. S.; Thomas, J. O. J. Power Sources 2001, 97, 498.
 doi: 10.1016/S0378-7753(01)00633-4
- (73) Saji, V. S.; Kim, Y. S.; Kim, T. H.; Cho, J.; Song, H. K. Phys. Chem. Chem. Phys. 2011, 13, 19226. doi: 10.1039/c1cp22818h
- (74) Srinivasan, V.; Newman, J. J. Electrochem. Soc. 2004, 151, A1517.
 doi: 10.1149/1.1785012
- (75) Delmas, C.; Maccario, M.; Croguennec, L.; Cras, F. L.; Weill, F. Nat. Mater. 2008, 7, 665. doi: 10.1038/nmat2230
- (76) Hong, L.; Li, L.; Chen-Wiegart, Y. K.; Wang, J.; Xiang, K.; Gan, L.;
 Li, W.; Meng, F.; Wang, F.; Wang, J.; *et al. Nat. Commun.* 2017, *8*, 1194. doi: 10.1038/s41467-017-01315-8
- (77) Lim, J.; Li, Y.; Alsem, D. H.; So, H.; Lee, S. C.; Bai, P.; Cogswell, D. A.; Liu, X.; Jin, N.; Yu, Y. S. *Science* 2016, *353*, 566.
 doi: 10.1126/science.aaf4914
- (78) Zhang, W.; Yu, H. C.; Wu, L.; Liu, H.; Abdellahi, A.; Qiu, B.; Bai, J.;
 Orvananos, B.; Strobridg, F. C.; Zhou, X.; *et al. Sci. Adv.* 2018, *4*.
 doi: 10.1126/sciadv.aao2608
- (79) Gaberscek, M.; Dominko, R.; Jamnik, J. *Electrochem.Commun.* 2007, 9, 2778. doi: 10.1016/j.elecom.2007.09.020
- Jansen, A. N.; Dees, D. W.; Abraham, D. P.; Amine, K.; Henriksen, G. L. *J. Power Sources* 2007, *174*, 373.
 doi: 10.1016/j.jpowsour.2007.06.235
- (81) Chang, Z. R.; Lv, H. J.; Tang, H. W.; Li, H. J.; Yuan, X. Z.; Wang, H. *Electrochim. Acta* 2009, 54, 4595.
 doi: 10.1016/j.electacta.2009.03.063
- (82) Doeff, M. M.; Wilcox, J. D.; Kostecki, R.; Lau, G. J. Power Sources 2006, 163, 180. doi: 10.1016/j.jpowsour.2005.11.075
- (83) Wang, Y.; Wang, Y.; Hosono, E.; Wang, K.; Zhou, H. Angew. Chem. -Int. Edit. 2008, 120, 7571. doi: 10.1002/anie.200802539
- (84) Wu, X. L.; Jiang, L. Y.; Cao, F. F.; Guo, Y. G.; Wan, L. J. Adv. Mater.
 2009, 21, 2710. doi: 10.1002/adma.200802998
- (85) Nien, Y. H.; Carey, J. R.; Chen, J. S. J. Power Sources 2009, 193,
 822. doi: 10.1016/j.jpowsour.2009.04.013
- (86) Yu, M., Zheng, W.; Cao, S.; Zhao, X. Acta Phys. -Chim. Sin. 2009, 25, 2186. [余红明, 郑威, 曹高劭, 赵新兵. 物理化学学报, 2009, 25, 2186.] doi: 10.3866/PKU.WHXB20091113
- (87) Sun, Y. K.; Oh, S. M.; Park, H. K.; Scrosati, B. Adv. Mater. 2011, 23, 5050. doi: 10.1002/adma.201102497
- (88) Oh, S. M.; Myung, S. T.; Park, J. B.; Scrosati, B.; Amine, K.; Sun, Y. K. Angew. Chem. -Int. Edit. 2012, 51, 1853.
 doi: 10.1002/anie.201107394
- (89) Xu, G.; Liu, Z.; Zhang, C.; Cui, G.; Chen, L. J. Mater. Chem. A 2015, 3, 4092. doi: 10.1039/C4TA06264G
- (90) Duan, Y.; Zhang, B.; Zheng, J.; Hu, J.; Wen, J.; Miller, D. J.; Yan, P.;

Liu, T.; Guo, H.; Li, W.; Song, X.; *et al. Nano Lett.* **2017**, *17*, 6018. doi: 10.1021/acs.nanolett.7b02315

- (91) Lu, C.; Rooney, D. W.; Jiang, X.; Sun, W.; Wang, Z.; Wang, J.; Sun, K. J. Mater. Chem. A 2017, 5, 24636. doi: 10.1039/c7ta08688a
- (92) Wang, B.; Kwak, B. S.; Sales, B. C.; Bates, J. B. J. Non-Cryst. Solids 1995, 183, 297. doi: 10.1016/0022-3093(94)00665-2
- (93) Tron, A.; Jo, Y. N.; Oh, S. H.; Park, Y. D.; Mun, J. ACS Appl. Mater. Inter. 2017, 9, 12391. doi: 10.1021/acsami.6b16675
- Li, W.; Dahn, J. R.; Wainwright, D. S. Science 1994, 264, 1115.
 doi: 10.1126/science.264.5162.1115
- (95) Luo, J. Y.; Cui, W. J.; He, P.; Xia, Y. Y. Nat. Chem. 2010, 2, 760. doi: 10.1038/nchem.763
- (96) Hou, Y.; Wang, X.; Zhu, Y.; Hu, C.; Chang, Z.; Wu, Y.; Holze, R. J. Mater. Chem. A 2013, 1, 14713. doi: 10.1039/c3ta13472e
- (97) Ren, W.; Chen, H.; Qiao, R.; Lin, Y.; Pan, F. J.Mater. Chem. A 2017, 5, 22598. doi: 10.1039/c7ta07332a
- (98) Hu, J.; Li, W.; Duan, Y.; Cui, S.; Song, X.; Liu, Y.; Zheng, J.; Lin, Y.;
 Pan, F. *Adv. Energy Mater.* **2016**, *7*, 1601894.
 doi: 10.1002/aenm.201601894
- (99) Yup Song, K.; Su Jang, G.; Tao, J.; Ho Lee, J.; Ki Joo, S. J.
 Electrochem. Soc. 2016, *163*, A2981. doi: 10.1149/2.0581614jes
- (100) Liu, G.; Zheng, H.; Simens, A. S.; Minor, A. M.; Song, X.; Battaglia,
 V. S. *J. Electrochem. Soc.* 2007, *154*, A1129.
 doi: 10.1149/1.2792293
- (101) Ren, W.; Wang, K.; Yang, J.; Tan, R.; Hu, J.; Guo, H.; Duan, Y.;
 Zheng, J.; Lin, Y.; Pan, F. *J. Power Sources* 2016, *331*, 232.
 doi: 10.1016/j.jpowsour.2016.09.049
- (102) Zheng, H.; Li, J.; Song, X.; Liu, G.; Battaglia, V. S. *Electrochim. Acta* **2012**, *71*, 258. doi: 10.1016/j.electacta.2012.03.161
- (103) Yu, D. Y. W.; Donoue, K.; Inoue, T.; Fujimoto, M.; Fujitani, S.
 J. Electrochem. Soc. 2006, *153*, A835. doi: 10.1149/1.2179199
- (104) Porcher, W.; Lestriez, B.; Jouanneau, S.; Guyomard, D.
 J. Electrochem. Soc. 2009, *156*, A133. doi: 10.1149/1.3046129
- (105) Elango, R.; Demortière, A.; De Andrade, V.; Morcrette, M.; Seznec,
 V. Adv. Energy Mater. 2018, 1703031.
 doi: 10.1002/aenm.201703031
- (106) Guo, Z.; Chen, Z. J. Alloys Compd. 2016, 685, 705.
 doi: 10.1016/j.jallcom.2016.05.237
- (107) Hu, J.; Jiang, Y.; Cui, S.; Duan, Y.; Liu, T.; Guo, H.; Lin, L.; Lin, Y.;
 Zheng, J.; Amine, K.; Pan, F. Adv. Energy Mater. 2016, 6, 1600856.
 doi: 10.1002/aenm.201600856
- (108) Delannoy, P. E.; Riou, B.; Brousse, T.; Le Bideau, J.; Guyomard, D.;
 Lestriez, B. *J. Power Sources* 2015, *287*, 261.
 doi: 10.1016/j.jpowsour.2015.04.067
- (109) Sun, K.; Wei, T. S.; Ahn, B. Y.; Seo, J. Y.; Dillon, S. J.; Lewis, J. A. Adv. Mater. 2013, 25, 4539. doi: 10.1002/adma.201301036