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Abstract
The successful fabrication of sub-5 nm 2D MoS2 field-effect transistors (FETs) announces the
approaching post-silicon era. It is possible for tunneling field-effect transistors (TFETs) based on
monolayer black phosphorene (ML BP) to work well in the sub-5 nm region because of its
moderate direct band gap, anisotropic electronic properties and high carrier mobility. We
simulate the device performance limit of the ML BP TFETs at the sub-5 nm scale using ab initio
quantum transport calculations. We predict that the on-state currents (Ion) of the sub-5 nm ML
BP TFETs will exceed those of the ML WTe2 TFETs, which possess the highest Ion among the
transition-metal dichalcogenide family. In particular, the Ion of the ML BP TFETs can fulfill
the 2028 requirements of the international technology roadmap for semiconductors (ITRS) for
the high-performance (HP) devices until the gate length is scaled down to 4 nm, while the delay
times and power dissipations always surpass the 2028 requirements of the ITRS HP devices
significantly in the whole sub-5 nm region.

Supplementary material for this article is available online

Keywords: monolayer black phosphorene, sub-5 nm scale, tunneling transistor, device
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1. Introduction

New-concept and post-silicon era field-effect transistors
(FETs) have been intensively investigated as silicon com-
plementary metal-oxide-semiconductor (CMOS) technology
is believed to end at the 5 nm node with unacceptable low

device performance and high power consumption [1–4]. The
new-concept tunneling FET (TFET) architecture causes a
lower subthreshold swing (SS) value than a thermionic
FET and even breaks the SS limit of thermionic FETs
(60 mV dec–1) [5–8]. However, the on-state currents (Ion) are
generally too small (10−6∼10−1 μA μm–1) when using
homogeneous bulk semiconductors as channel materials
[6, 7]. The Ion can be improved to 400 and 142 μA μm−1 in
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the 20 nm-gate-long Ge-Si [9] and 5 nm-gate-long Ge/GaAs
[10] thin heterojunction TFETs, respectively, but remain
lower than those of the present high-performance (HP) logic
device. Small Ion means slow switching speed in the logic
device, which is one of the key stumbling blocks for the
practical application of TFETs. 2D semiconducting materials
are potential channel materials to extend Moore’s law down
to the sub-5 nm scale [7, 8, 11–15]. Their atomic thin bodies
imply excellent gate controlling and geometric scaling capa-
cities, while their smooth surfaces with fewer traps allow for
efficient carrier transport [8, 16]. The inherent thin body and
smooth surface of 2D materials provide a possible opportu-
nity to elevate the on-state currents of TFETs.

Black phosphorene (BP), as a relatively new member of
the 2D family, holds a moderate direct band gap, anisotropic
electronic property and high carrier mobility. Since its first
discovery in 2014, the thermionic BP FET has been experi-
mentally fabricated and extensively studied [17–20]. A higher
on-state current than the 2D transition-metal dichalcogenide
channel has been found in the BP thermionic FET due to the
anisotropic nature of monolayer (ML) BP [21, 22]. ML BP is
also an extraordinary channel material for TFETs [23–27]. In
particular, ab initio calculations have revealed that the ML BP
TFETs with a gate length above 6.1 nm have on-state cur-
rents, delay times and power dissipations that meet the
requirements of the international technology roadmap for
semiconductors (ITRS) (2013 version) [28] for HP devices
[25]. Very recently, 2D MoS2 conventional FETs with a
1∼9 nm gate length [1, 29–31] have been fabricated suc-
cessfully. Encouraged by the fast development of sub-5 nm
technology, it is highly desirable to know whether the
excellent device performance of ML BP TFETs can be
maintained when the gate length is scaled down to below
5 nm.

In this paper, we simulate the ML BP TFETs with the
gate length of 1∼5 nm along the armchair transport direc-
tion by using ab initio quantum transport simulations. The
device performance of a 5 nm-gate-long ML WTe2 TFET is
calculated for comparison, as ML WTe2 is predicted to be the
best channel material for TFET in the transition-metal
dichalcogenide family by a previous ab initio quantum
transport simulation based on the flexible plane wave method
[32]. The on-state current of the ML BP TFET with the 5 nm-
long gate is more than four times greater than its WTe2
counterpart, implying a faster switching speed of the former.
The on-state currents of the ML BP TFET can even fulfill the
2028 requirements of the ITRS for HP devices (2013 version)
[28] until the gate length is scaled down to 4 nm. Moreover,
the delay times and power dissipations of the ML BP TFETs
always surpass the 2028 requirements of the ITRS HP devices
significantly in the whole sub-5 nm region.

2. Models and methods

A double-gated (DG) TFET model with planar p-i-n config-
uration based on ML BP is illustrated in figure 1(a). In this

p-i-n configuration, the carrier transport mechanism is band-
to-band tunneling (BTBT). The p- and n-type regions serve as
the source and drain, respectively, and the intrinsic region
forms the tunneling barrier, which can be tuned by the gate
voltage to switch on and off. We take the gate lengths (Lg) as
1∼5 nm in steps of 1 nm. The device parameters, i.e. the
equivalent oxide thickness (EOT), drain voltage (Vds), and
supply voltage (Vdd), are taken from the 2028 ITRS HP tar-
gets (2013 version) [28] with EOT=0.41 nm and
Vds=Vdd=0.64 V, respectively. The working voltage of
0.64 V is for a 5 nm-gate-long transistor for the ITRS 2028
target for HP application, which is a little bit smaller than that
of 0.7∼0.78 V for a current 10∼14 nm-gate-long tran-
sistor for HP application (present CMOS) [28, 33, 34]. In the
following, we are mainly concerned with the scale limit of the
ML BP TFETs for HP application, so the device performance
at a lower working voltage of 0.3∼0.5 V for low-power
(LP) application is not studied. The connection between the
dielectric and BP layer is ideal and has no trap density at
the interface, so that the simulated device performance should
be the upper limit. A good point is that the dangling-bond-free
surface of the ML BP would depress the trap density in a real
device configuration.

The device performances are calculated with the Atomistix
ToolKit (ATK) 2016 package [35–37] based on density func-
tional theory (DFT) coupled with the nonequilibrium Green’s
function method. We use the generalized gradient approximation
(GGA) of Perdew–Burke–Ernzerhof (PBE) [38] form as the
exchange-correlation functional, Hartwigsen–Goedecker–Hutter
type as norm-conserving pseudopotentials and Tier 1 as the basis
set. The density mesh cutoff is set to 100 Ha and the electron
temperature is set to 300 K. The Monkhorst–Pack k-point mesh
[39] is set to 29×1×100 for the electronic self-consistent
calculations. The current at a given gate voltage Vg and
bias voltage Vds is an integration of the transmission coefficient
T (E, Vds, Vg) using the Landauer–Büttiker formula [40]:
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where fL/R is the Fermi–Dirac distribution function and μL/μR
the electrochemical potential of the L/R electrode. The gate
effect is calculated by solving the Poisson and Kohn–Sham
equations self-consistently. T (E) is an average of T (E, kx′) over
different kx′ (kx′=57) in the irreducible Brillouin zone, where
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electrodes on the scattering region [41].
DFT-GGA is a good approximation for the transport

calculation in an FET configuration [42–46]. For an intrinsic
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(undoped) semiconductor, DFT-GGA takes the single-elec-
tron approximation and tends to underestimate the band gap,
while the quasi-particle approach considers the many-body
effect and is able to give the exact band gap. However, the
many-body effect is strongly depressed in a degenerately
doped semiconductor, and the quasi-particle band gap
becomes close to the DFT-GGA band gap. For example, the
band gap of ML BP of 1.1 eV is calculated at DFT-GGA
level, which is independent of the doping concentration. The
quasi-particle band gap of the ML BP decreases from 2.2 eV
in the undoped state to 1.4 eV at a degenerately doped level
[47], and the latter is close to the DFT-GGA value. In an FET,
the channel semiconductor is in a degenerately doped state,
and hence, the DFT-GGA band gap approximates the quasi-
particle band gap in an FET. The reliability of ab initio
quantum transport simulation in describing the sub-10 nm
FET is partially validated from the general agreement of the
observed and simulated transfer characteristic for a 1 nm-gate-
long thermionic MoS2 FET [22]. In particular, the calculated
SS value is 66 mV dec–1 [22], which is nearly equal to the
experimental one of 65 mV dec–1 [1].

3. Results and Discussions

3.1. Device optimization

ML BP forms a puckered honeycomb layer with an orthorhombic
unit cell with the optimized lattice constants of 3.32 and 4.41 Å.
The band structure is highly anisotropic with a direct band gap of

1.09 eV at Γ point at PBE level. The electron and hole effective
masses are very small (mh/me=−0.135/0.141 m0) and heavy
(mh/me=−2.445/1.210 m0) along the armchair and zigzag
directions, respectively. The lattice constants, band gap and
effective masses are all consistent with a previous theoretical
study [24]. The device performance should be distinct along the
armchair and zigzag directions due to the highly anisotropic
electronic structure. We only investigate the armchair transport
direction due to the eight orders of magnitude larger current than
that along the zigzag direction from previous semi-empirical
calculations [23, 24]. We use light and heavy doping con-
centrations for the source and drain regions (Ns/Nd), respectively,
to obtain a lower leakage current and a higher on-state current, as
illustrated in our previous work [25]. We first test Ns/Nd and the
length of the source underlap region (ULs, intrinsic region neither
biased nor gated) of the ML BP TFET at Lg=5 nm, for the sake
of a high on-state current (Ion), which is desired to maximize the
switching speed. The transfer characteristics of these tested BP
TFETs as functions of Ns/Nd (fixed ULs=0 nm) and ULs (fixed
Ns/Nd=3×10

12/−6×1013 cm−2) are given in figures 1(b)
and (c), respectively. Under optimal schemes, the leakage current
(Ileak, the smallest current, not the off-state current) can meet the
ITRS requirements of 0.1μAμm−1 for HP devices, but still
higher than the requirements of 5×10−5μAμm−1 for the ITRS
LP devices, as can be seen in figures 1(b) and (c). We get the
on-state current Ion at the on-state gate voltage Vg (on), where
Vg (on)=Vg (off)−Vdd=Vg (off)−0.64 V. The off-state gate
voltage Vg (off) is taken at the point where the off-state current Ioff
is 0.1μAμm−1 according to the ITRS HP goal. We marked the

Figure 1. (a) Schematic view of the sub-5 nm DG ML BP TFET along the armchair transport direction. (b), (c) Transfer characteristics for the
5 nm-gate-long DG ML BP TFETs with (b) source/drain doping concentrations Ns/Nd (ULs=0 nm) and (c) source underlap length ULs

(Ns/Nd=0.3/6×1013 cm−2) at Vbias=Vdd=0.64 V. We mark the on-state current for each device as the largest current in each curve.
Purple ball, P.
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on-state currents as the highest currents marked in figures 1(b)
and (c). The lowest Ns=8×10

11 cm−2 and higher
Nd=−6×10

13 cm−2 are the best Ns/Nd for highest Ion, as
shown in figure 1(b). And the longest ULs=5 nm is the best
choice for the highest Ion, as shown in figure 1(c).

We also take ML WTe2 as channel material to construct a
TFET with a 5 nm-long gate for the sake of comparison as it
is the best channel material for TFET in the transition-metal
dichalcogenide family according to a previous ab initio
quantum transport simulation based on the flexible plane
wave method [32]. The transfer characteristics of these ML
WTe2 TFETs with Lg=ULs=5 nm as functions of source/
drain doping concentrations are given in figure S1(a), which
is available online at stacks.iop.org/NANO/29/485202/
mmedia in the supporting material. All the Ileak are low
enough to meet the ITRS LP goals of 5×10−5 μA μm−1.
We take Ioff (HP) and Ioff (LP) at 0.1 and 5×10−5 μA μm−1

according to the ITRS HP and LP standard, respectively, and
the corresponding gate voltage is Vg (off/HP) and Vg (off/
LP) for HP and LP application, respectively. Then Ion (HP)
and Ion (LP) are obtained at Vg (on/HP)=Vg (off/HP)−0.64
V and Vg (on/LP)=Vg (off/LP)−0.64 V, respectively. The
benchmark Ion of ML WTe2 TFET against the ITRS 2028
requirements for HP and LP devices are given in figures S1(b)
and (c), respectively. Reducing Ns has the effect of improving
both Ion(HP) and Ion(LP). But the highest Ion (HP) and Ion
(LP) are only 253 and 77 μA μm−1, respectively, which still
cannot meet the ITRS HP and LP 2028 goals.

3.2. Device performance

We take the optimal Ns/Nd=8×1011/−6×1013 cm−2 and
optimal ULs=(10−Lg) nm for the ML BP TFETs with
Lg=1∼5 nm in steps of 1 nm. The optimal transfer char-
acteristics are presented in figure 2(a) and those without ULs are
given for comparison in figure 2(b). Ileak are in the range of

2.06×10−4∼1.32×10−2 and 1.21×10−3∼2.26×
10−1 μA μm–1 for the sub-5 nm ML BP TFETs with ULs=
10−Lg and ULs=0 nm, respectively. All the leakage currents
except those of the ML BP TFET with Lg=1 nm and ULs=
0 nm can meet the ITRS HP goals of 0.1 μA μm−1, but are still
higher than the requirements of 5×10−5μA μm−1 for ITRS
LP devices. We benchmark the key figures of merit of the sub-5
nm ML BP TFETs against those of the ITRS 2028 requirements
for HP transistors and those of the ML WTe2 TFET with Lg=
5 nm in table 1 and figure 3.

Ion is one of the critical parameters for a transistor to
denote the switching speed of logic transitions. High Ion
means fast switching, which is beneficial for efficient appli-
cations such as HP servers. From figure 3(a), Ion mono-
tonously decreases rapidly with the decreased Lg, irrespective
of the underlap. Ion of the sub-5 nm ML BP TFETs
(1.39×102∼1.12×103 μA μm−1) with ULs=(10−Lg)
nm are always larger than those (2.50×101∼1.06×
103 μA μm−1) with ULs=0 nm, given the same Lg. The
improvement of Ion by ULs is generally more effective for
shorter Lg. The Ion of the ML BP TFETs with Lg=5 nm are
1.12×103 and 1.06×103 μA μm−1 with ULs=5 and 0
nm, respectively, significantly higher than the value of
9×102 μA μm−1 for the ITRS 2028 requirements for HP
transistors by 24.4% and 17.8%, respectively. The Ion of that
with Lg=4 nm and ULs=6 nm is 9.02×102 μA μm−1,
which can still meet the ITRS 2028 requirements for
HP transistors. Remarkably, the Ion value of 1.12×
103 μA μm−1 for the ML BP TFETs with Lg=ULs=5 nm
is four times larger than that of 2.53×102 μA μm−1 for the
examined ML WTe2 counterpart with the same Lg and ULs at
the same calculation level. The Ion of the ML WTe2
TFET with Lg=7 nm is 1890 μA μm−1 taken at Vds/Vdd=
0.5/0.7 V with Ioff=7.5×10−2 μA μm–1 from a previous
ab initio quantum transport simulation based on the flexible
plane wave method [32]. The several times higher Ion of the

Figure 2. Transfer characteristics for the sub-5 nm DG ML BP TFETs with source underlap length (a) ULs=(10−Lg) nm and (b) ULs=0
nm. We mark the on-state current for each device as the largest current in each curve.
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previous study is due to the plane wave method, where we use
an atom orbital basis set.

SS is a key factor to represent the gate control ability,
where a smaller value infers a better gate control at the sub-

threshold region. The definition is =
¶

¶

V

I
SS

lg
,

g

d

which

indicates the needed Vg to change the drain current Id by one
order of magnitude. From figure 3(b), the calculated SS of the
ML BP TFETs increase obviously with the decreased Lg,

irrespective of ULs. The SS of the sub-5 nm BP TFETs
(90∼180 mV dec–1) with ULs=(10−Lg) nm are always
smaller than those (108∼194 mV dec–1) without ULs, given
the same Lg. The ultrashort Lg is responsible for the relatively
larger SS, compared to 53 mV dec–1 for the one with Lg=10
nm [25]. The minimum SS of 90 mV dec–1 of the ML BP
TFETs with Lg=5 nm and ULs=(10−Lg) nm is not as
low as a real TFET (sub-60 mV dec–1). However, this does
not affect the device performance, especially the on-state

Table 1. Benchmark of the ballistic device performances of the sub-5 nm DG ML BP TFETs against the ITRS 2028 requirements for HP
transistors and those of the DG ML WTe2 TFET with a 5 nm-long gate. Ns/Nd: source/drain doping concentrations; ULs: source underlap
length; EOT: equivalent oxide thickness; Vdd: supply voltage; SS: subthreshold swing; Cg: intrinsic gate capacitance; τ: delay time; and PDP:
power dissipation. We take the armchair direction as the transport direction and set the EOT=0.41 nm, Vbias=Vdd=0.64 V and
Ioff=0.1 μA μm–1 for all the calculated devices.

Lg (nm) Ns/Nd (10
13 cm−2) ULs (nm) Ion (μA/μm) SS (mV/dec) Cg (fF/μm) τ (ps) PDP (fJ/μm)

ML BP HP 5 0.3/6 5 1113 101 0.036 0.021 0.021
ML BP HP 5 0.08/6 0 1059 108 0.035 0.021 0.020
ML BP HP 5 0.08/6 5 1123 90 0.034 0.020 0.026
ML WTe2 HP 5 0.08/6 5 253 65 0.042 0.106 0.024
ITRS HP 2028 5.1 — — 900 — 0.4 0.423 0.24
ML BP HP 4 0.08/6 6 902 106 0.034 0.024 0.022
ML BP HP 3 0.08/6 7 613 124 0.033 0.054 0.019
ML BP HP 2 0.08/6 8 342 148 0.031 0.089 0.014
ML BP HP 1 0.08/6 9 139 180 0.022 0.155 0.009

Figure 3. Benchmark of the (a) Ion, (b) SS, (c) delay time (τ) and (d) PDP of the sub-5 nm DG ML BP TFETs against the ITRS 2028
requirements for HP devices and the DG ML WTe2 TFET.
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current. This is because the SS value of the ML BP TFET can
be held in a wide drain current scope until the drain current
reaches ∼100 μA μm–1, which in turn leads to a high on-state
current of 1.12×103 μA μm–1. On the other hand, a smaller
minimum SS of 65 μA μm−1 is obtained in the examined ML
WTe2 counterpart, but its Ion is only 2.53×102 μA μm–1,
which is only one fourth of that of the ML BP one. This is
because the SS value of the ML WTe2 one can be kept until
the drain current is ∼1 μA μm–1. We compared the SS of the
sub-5 nm TFETs without ULs with those of their metal-oxide-
semiconductor field-effect transistor (MOSFET) counterparts
in figure S2 in the supporting material. Notably smaller SS of
108∼194 mV dec–1 is obtained in the TFET architecture
than those of 129∼372 mV dec–1 in the MOSFET archi-
tecture under the same Lg.

Delay time (τ) is the drain current response time to the
gate voltage, and a small τ directly reflects a rapid operation.

It is defined as t =
C V

I
.

g dd

on

Here, Cg is the intrinsic gate

capacitance, defined as =
¶
¶

C
Q

V
,g

ch

g
where Qch is the total

charge of the gate region. The calculated τ of the sub-5 nm
ML BP TFETs with and without ULs is given in figure 3(c).
The addition of ULs has the effect of decreasing the delay
time when given the same Lg due to the effective enhanced
Ion. The calculated τ for the 5 nm-gate-long ML BP TFETs
with ULs=5 nm is 0.020 ps, and it increases almost linearly
to 0.156 ps as Lg decreases to 1 nm. Whereas, its counterpart
with Lg=5 nm and no ULs has a comparable τ value of
0.021 ps, but it first increases to 0.123 ps at Lg=3 nm and
then jumps to 0.804 ps at Lg=2 nm. The delay times of the
ML BP TFETs with ULs=(10−Lg) nm are always smaller
than the ITRS 2028 requirement of 0.423 ps for an HP device.
In particular, the delay times of these TFETs with longer
Lg=4∼5 nm are more than one order of magnitude smaller
than that of the ITRS HP 2028 requirement. τ of 0.020 ps for
the ML BP TFET with Lg=ULs=5 nm is five times
smaller than that of the 0.106 ps of its ML WTe2 counterpart.
The quite small τ indicates the fast switching ability of ML
BP TFETs even at sub-5 nm scale.

Another major concern for FETs is power consumption,
especially when considering integration application at very
large scale. We indicate the device power consumption using
power dissipation (PDP) per width, which is defined as

=
-( ) ·Q Q V

W
PDP .

on off dd
Here, Qon/Qoff are the total

charges of the gate region under the on-/off-states and W is
the channel width. From figure 3(d), the calculated PDPs
decrease with the decreased Lg. The PDPs are
0.014∼0.026 fJ μm−1 for the ML BP TFETs with
ULs=(10−Lg) nm, which are generally larger than those
of 0.014∼0.020 fJ μm−1 with no ULs, given the same Lg.
This is because ULs has increased the electron transport dis-
tance between the two electrodes. The calculated PDPs are
one order of magnitude smaller than the ITRS HP 2028
requirement of 0.24 fJ μm−1. The PDP of 0.26 fJ μm−1 for the
ML BP TFET with Lg=ULs=5 nm is slightly larger than
that of the 0.024 fJ μm−1 of its ML WTe2 counterpart. It is

inspiring that the ML BP TFETs would cost one order of
magnitude less switching energy during the one order of
magnitude faster switching speed compared to the ITRS HP
2028 target when Lg>3 nm.

3.3. Discussions

The Ileak and Ion of the ML BP TFET are three orders of
magnitude and four times larger than those of its ML WTe2
counterpart, respectively. In the two devices, device technical
parameters (i.e. EOT, Vds and Vdd), gate length, source
underlap region length, source/drain doping concentration
and calculation parameters are all the same. That is, we take
Lg=ULs=5 nm and Ns/Nd=8×1011/−6×1013 cm−2

in the ML BP and WTe2 TFETs with EOT=0.41 nm and
Vds=Vdd=0.64 V using the same GGA-PBE functional
and Tier 1 basis set. Thus, the distinct values of the Ileak and
Ion of the two TFETs must arise from the intrinsic factors of
the two materials. To explore the intrinsic reasons, we com-
pare the projected density of states (PDOS) of the source/
drain region, local device density of states (LDDOS) and
transmission spectra (T(E)) under the off-/on-states for the
ML BP and WTe2 TFETs.

In a TFET, the current comes from BTBT carriers in the
bias window due to the overlap of the source valence and
drain conduction bands. The hole/electron densities of the
source/drain (i.e. PDOS(source/drain)), the band gap Eg of
the channel material and the hole/electron effective masses of
the source/drain mh/me along the transport direction are three
factors that affect the BTBT transmission spectrum, that is

µ( ) ( )T E PDOS source × ´ -( ) ·ePDOS drain .E m mg h e4 We
plot the PDOS (source/drain) of the ML BP and WTe2
TFETs in figures 4(a) and (d), respectively. The PDOS
(source/drain) of the ML WTe2 are larger, which is advan-
tageous for a larger transmission spectrum. The channel Eg

determines the BTBT barrier height, and it can be reflected
from the LDDOS of the ML BP and WTe2 TFETs, as shown
in figures 4(b) and (e), respectively. As Eg of ML BP and
WTe2 are very similar, having the values of 1.09 and 1.15 eV,
respectively, the effect of Eg can be ignored. The effective
masses in ML BP and WTe2 are mh/me=−0.135/0.141 m0

and −0.514/0.344 m0, respectively. The product of mh and
me in ML BP is 0.019 m0

2, nearly one order of magnitude
smaller than that of 0.18 m0

2 in ML WTe2, which would cause
a notably higher BTBT transmission spectrum in ML BP.

The finial BTBT transmission spectrum is a comprehen-
sive effect of PDOS(source)×PDOS(drain), Eg, and mh·me in
the transport direction, and mh·me in the transport direction is
the dominant factor. Ultimately, we get a larger on-state
transmission spectrum in the ML BP TFET than its WTe2
counterpart (see figures 4(c) and (f)), which leads to a larger
on-state current in the ML BP TFET. For HP application, the
Ion of ML BP and WTe2 TFETs are 1123 and 253 μA μm−1,
respectively, with Ioff=0.1 μA μm−1 according to the ITRS
HP requirement. The choice of ML BP channel can meet the
HP required of 900 μA μm−1. On the other hand, the higher
effective masses are more beneficial for a lower leakage current
[48, 49], and actually the Ileak are 1.29×10−7 and
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2.06×10−4 μA μm−1 for the ML WTe2 and BP channels,
respectively. Taking Ioff=5×10−5μA μm−1 according to
the ITRS LP requirement, the Ion of ML WTe2 in planar p-i-n
TFET architecture is 77 μA μm−1, which, however, is lower
than the LP required of 295 μA μm−1. We suggest two pos-
sible schemes to explore a TFET for effective LP application.
One is finding a desired channel material, probably with a
comparable band gap of around 1.0 eV and a product ofmh and
me between 0.019 m0

2 (ML BP) and 0.18 m0
2 (ML WTe2). The

other one is exploring vertical heterojunction architecture
instead of planar homojunction architecture.

The transport ability of carriers can be reflected from the
transmission eigenvalues and eigenstates at E=−0.32 eV
under the off-/on-states for the ML BP and WTe2 TFETs
taken at (0, 0) and (0.33, 0) k-points, respectively. The two
transmission eigenvalues under off-states are almost the same
with the values of 4.81×10−5 and 6.61×10−5 for the ML
BP and WTe2 TFETs, respectively. Whereas the transmission
eigenvalue of the ML BP TFET under on-state increases
significantly to 1.31×10−1, much larger than that of
2.70×10−2 for its ML WTe2 counterpart. We plot the
corresponding off-/on-state eigenstates for the ML BP and
WTe2 TFETs in figures S3(a) and (b), respectively. The
incoming electron wavefunctions from the source regions are
forbidden to reach the drain regions under the off-states from

the upper images. Whereas, the incoming electron wave-
functions from the source region pass through the whole
channels to reach the drain regions, and more electron
wavefunction is found in the drain region of the ML BP
TFET, which represents a larger Ion in the ML BP TFET.

We have noted that the source underlap region ULs has
an activity effect that improves the Ion of ML BP TFETs: the
longer the ULs, the higher the Ion. To explore the function of
ULs, we compare the LDDOS of the ML BP TFETs with
Lg=2 nm and different ULs values in figure 5. For the off-
state LDDOS in figure 5(a), the potentials of the gate regions
are lifted with the increased ULs. Correspondingly, the
potentials of the gate regions under the on-states are then
lifted with increased ULs as the applied voltages are the same
(see figure 5(b)). Therefore, the BTBT barrier heights are
reduced with the increased ULs, which results in a larger Ion
in the ML BP TFET with longer ULs, given the same Lg.

3.4. Prospective

The ML BP TFET is a prospective candidate to extend
Moore’s law down to sub-5 nm scale for HP application with
rapid operation. Economical synthesizing methods of ML BP,
patterning techniques to 1 nm resolution and feasible doping
ways to the electrodes are three key points for the realization of

Figure 4. (a), (d) PDOS of the source and drain; (b), (e) LDDOS under off-/on-states; and (c), (f) transmission spectra (T(E)) for the ML BP
(a)–(c) and WTe2 TFETs (d)–(f). In these TFETs, Lg=ULs=5 nm and Ns/Nd=8×1011/−6×1013 cm−2. The black/white dashed
lines indicate the source to drain tunneling window of Vds=0.64 V.
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the sub-5 nm BP TFETs. ML BP was achieved successfully by
mechanical exfoliation in 2014 [17, 19]. Very recently, single
crystals of orthorhombic BP samples, several millimeters in
size, have been realized with high crystal quality and purity
from red phosphorus with Sn/SnI4 [50], making the large-area
preparation of ML BP possible. Till now, the fabricated 2D BP
Schottky barrier field-effect transistors (SBFETs) have already
been scaled down to 20 nm [20]. Electron beam lithography
[51], utilizing the natural dimension of a single-walled carbon
nanotube as the gate [1], hydrogen plasma etching [29],
directed self-assembly of block copolymer [30] and corrosion
cracking along with cleavage plane [31] are all feasible ways
for 1 nm patterning resolution. It is inspiring that sub-5 nm 2D
SBFETs have been experimentally achieved using the ML
MoS2 channel very recently [1, 29], and scaling the ML BP
channel to this patterning resolution is foreseeable in the near
future following a similar fabrication technique.

Finding a feasible way to dope ML BP is another key to
fabricating ML BP TFETs. Doping the 2D electrodes is dis-
tinguished from bulk materials, since the conventional state-
of-the-art substitution doping strategy is not suitable for 2D

materials. Also, the contact of high/low work function bulk
metal is improper because the BP electronic structure usually
cannot be kept intact after such metal contacts [52–54]. It is
inspiring that several doping strategy techniques, i.e. elec-
trostatic doping [55, 56], surface charge transfer doping
[57, 58] and bulk doping [59, 60] have been successfully used
to dope BP in labs. Among these, the electrostatic gating
technique is the most feasible way because controllable
doping levels can be achieved by injecting electrons or holes
into the respective bands. Since the techniques for synthe-
sizing ML BP, patterning to sub-5 nm resolution, and doping
2D electrodes, are all practicable, the experimental fabrication
of sub-5 nm ML BP TFET is feasible.

4. Conclusions

To summarize, we simulate the device performance limit of
the ML BP TFETs at sub-5 nm scale by using ab initio
quantum transport calculations. With optimal doping con-
centration and underlap configuration, we predict that the

Figure 5. LDDOS of the 2 nm-gate-long DG ML BP TFETs with ULs=0, 4 and 8 nm under (a) off- and (b) on-states. We marked the gate
region and the width of the barrier with dashed green lines and circles, respectively. White dashed lines indicate the source to drain tunneling
window of Vds=0.64 V.
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on-state current of the ML BP TFET at a gate length of 5 nm
is four times larger than that of its ML WTe2 counterpart,
which possesses the highest Ion among the transition-metal
dichalcogenide family. In particular, the Ion of the ML BP
TFETs can even fulfill the 2028 target of the ITRS for HP
devices until the gate length is scaled down to 4 nm. The large
on-state current implies a fast switching speed of the sub-5
nm ML BP TFETs. More encouragingly, the delay times and
power dissipations surpass the 2028 requirements of the ITRS
for HP devices significantly even at an ultimate gate length of
1 nm. The predicted remarkable device performance makes
ML BP a competitive candidate for TFETs in the sub-5 nm
nodes.
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