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a b s t r a c t

The new distribution class, Asymmetric Exponential Power Distribution (AEPD), proposed in this paper
generalizes the class of Skewed Exponential Power Distributions (SEPD) in a way that in addition to
skewness introduces different decay rates of density in the left and right tails. Our parametrization
provides an interpretable role for each parameter. We derive moments and moment-based measures:
skewness, kurtosis, expected shortfall. It is demonstrated that a maximum entropy property holds for
the AEPD distributions. We establish consistency, asymptotic normality and efficiency of the maximum
likelihood estimators over a large part of the parameter space by dealing with the problems created by
non-smooth likelihood function and derive explicit analytical expressions of the asymptotic covariance
matrix; where the results apply to the SEPD class they enlarge on the current literature. Also we give a
convenient stochastic representation of the distribution; ourMonte Carlo study illustrates the theoretical
results. We also provide some empirical evidence for the usefulness of employing AEPD errors in GARCH
type models for predicting downside market risk of financial assets.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Observed characteristics of many financial data series havemo-
tivated exploration of classes of distributions that can accommo-
date properties such as fat-tailedness and skewness while nesting
distributions typically used in estimation such as the normal (and
skew-normal). An important desired property of any such class is
that it permits maximum likelihood estimation of all parameters.
Obtaining closed-form expressions for the moments of interest,
such as themean, variance, skewness and kurtosis, as well as com-
ponents of the information matrix provides useful interpretable
features of the distributions in the class. For applications in risk
management one may in addition be interested in closed-form ex-
pressions for value-at-risk and expected shortfall of asset/portfolio
returns. Classes of non-symmetric distributions that nest the skew-
normal were constructed by Azzalini (1986). Other classes of dis-
tributions with the desired properties of accommodating heavy
tails and skewness, the Skewed Exponential Power Distribution
(SEPD) classes, were proposed in Fernandez et al. (1995), Theo-
dossiou (2000) and Komunjer (2007); they all generalize the
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generalized error distribution (GED) class.1 Many financial
applications of the GED as well as its skew extensions have been
considered in Hsieh (1989), Nelson (1991), Duan (1999), Rachev
and Mittinik (2000), Theodossiou (2000), Ayebo and Kozubowski
(2004), Komunjer (2007), Christoffersen et al. (2005) and others.
Especially in applications to option pricing, the GED and its skew
extensions are preferred to Student-t distributions because it is
found that Student-t distributions are not suited to model con-
tinuously compounded returns (see Duan (1999) and Theodossiou
(2000)). Since all moments of the GED exist, the moments of expo-
nential transformations of GED random variables, needed to price
options, can be evaluated.
Ayebo and Kozubowski (2004) presented basic properties

of the SEPD of Fernandez et al. (1995), derived maximum
likelihood estimators of scale and skewness parameters given
other parameters, and discussed its applications in finance.
Komunjer (2007) exploredmoments (also see Theodossiou (2000))
as well as measures such as value at risk and expected shortfall
useful in financial applications. DiCiccio and Monti (2004) studied
properties of MLEs of the Azzalini’s (1986) SEPD, and obtained
results for the information matrix (not in closed form) and for
inferential properties of MLE.

1 The GED class was proposed first by Subbotin (1923) and Box and Tiao (1973)
called such a distribution the Exponential Power Distribution (EPD). It is also called
the Generalized Power Distribution or the Generalized Laplace Distribution.
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However, for some applications in finance and risk manage-
ment, the skew extensions may not be rich enough to capture all
the asymmetry of distributions of asset returns, particularly asym-
metry in the tails. For example, it is found especially for portfo-
lios such as S&P500 and NASDAQ that ex post innovations from
estimated GARCH models (even with a leverage effect) are not
normally distributed—the QQ plot of ex post innovations typically
shows that the fit in the upper tail is good but the lower tail is heav-
ier than that of the normal distribution (see Figure 6 of Bradley
and Taqqu (2003) for NASDAQ, Figure 4.2 of Christoffersen (2003)
for S&P500). To capture the asymmetry in the tails, this paper ex-
tends the SEPD to a fully asymmetric exponential power distribu-
tion (AEPD)where heavy-tailedness itselfmay be asymmetricwith
different tail exponents on different sides of the distribution.
We demonstrate that the AEPD class has desired properties:

interpretable parameters to represent location, scale, and shape,
closed-form expressions for the moments as well as for value
at risk and expected shortfall. A maximum entropy property is
shown to hold and a stochastic representation of the AEPD is given.
We develop asymptotic properties of the MLE (consistency and
asymptotic normality) and obtain fully closed-formexpressions for
the information matrix for all parameters. Thus we also provide
new theoretical results such as closed-form expressions for the
asymptotic covariance matrix and consistency and asymptotic
normality of MLE for some SEPD classes, expanding on results
currently available in the literature. Comparing the AEPD with
Azzalini’s (1986) SEPD class, both classes have continuous but
non-differentiable densities; the latter density however involves
an integral (normal cdf). Also, the AEPD has more flexible tail
behavior and analytical expressions for mode andmoments; while
for Azzalini’s (1986) SEPD, the left tail is always thinner than the
right one, its odd moments involve infinite series expansions, and
it is not possible to find an analytic expression for the mode. In
addition, note that DiCiccio and Monti (2004) were not able to
provide closed form expressions for the information matrix (nor
complete proofs of asymptotics forMLE) for Azzalini’s (1986) SEPD.
In addition, we provide some empirical evidence for the usefulness
of employing AEPD errors in GARCH typemodels for predicting the
value at risk of financial assets.
The paper is organized as follows. Section 2 explains the relation

between EPD, SEPD and AEPD classes highlighting the main
features of the new AEPD class. The interpretation of parameters
is provided in Section 3. Section 4 gives basic properties of the
AEPD such as analytical expressions of cdf, quantiles, moments
and expected shortfall. In Section 5 we establish consistency and
asymptotic normality of the MLE and Section 6 provides some
finite sample Monte Carlo results. We also provide an application
of the AEPD in Section 7. Technical results and proofs are collected
in the Appendices A–C; more detailed proofs are in Zhu and Zinde-
Walsh (2007). Appendix D shows graphs of AEPD densities for
different parameter combinations.

2. The relation between EPD, SEPD and AEPD

The density function of the EPD (or GED) is usually defined as:

fEP(x | p, µ, σ ) =
1
σ
KEP(p) exp

(
−
1
p

∣∣∣∣x− µσ
∣∣∣∣p) , (1)

where µ ∈ R and σ > 0 are the location and scale parameters
respectively, p > 0 is the shape parameter, and KEP(p) is the
normalizing constant, KEP(p) ≡ 1/[2p1/p0(1 + 1/p)]. If X is a
randomvariablewith the EPD density, then the location parameter
µ = E(X) = med(X), the median of X; the scale parameter
σ = (E |X − µ|p)1/p, which is the Lp-norm deviation, has an
interpretation similar to that of the standard deviation of the
normal distribution. When the shape parameter p gets smaller
and smaller, the EPD becomes more and more heavy-tailed and
leptokurtic. With p = 2, p = 1, and p→+∞, the EPD reduces to
the normal, Laplace and uniform distributions, respectively.
So far, there are two different methods to extend the EPD to

a skewed exponential power distribution (SEPD). Azzalini (1986)
first proposed a family of SEPD based on the fact that if f (·) is
a density symmetric about 0 and Π(·) an absolutely continuous
distribution function such that its pdfΠ ′(·) is symmetric about 0,
then 2Π(λx)f (x) is a density for any realλ. Taking f = fEP andΠ =
normal cdf or EPD’s cdf, we get Azzalini’s SEPD class. Fernandez
et al. (1995) extended the EPD class to another family of SEPD by
using a two-piece method, in which an additional skew parameter
γ is introduced (also see Kotz et al. (2001), p 271).
By a method similar to that of Fernandez et al. (1995), Theo-

dossiou (2000) and Komunjer (2007), respectively, constructed
seemingly different classes of SEPD, which are actually reparame-
trizations of that of Fernandez et al. (1995).2 However, Komunjer’s
(2007) asymmetry parameter α is interestingly interpreted as the
probability such that the location parameter is exactly the α-
quantile of the SEPD. Noting the interpretable nature of the param-
eters this paper follows a similar method to construct the AEPD.
The AEPD density has the following form:

fAEP(x | β)

=



( α
α∗

) 1
σ
KEP(p1) exp

(
−
1
p1

∣∣∣∣x− µ2α∗σ

∣∣∣∣p1) , if x ≤ µ;(
1− α
1− α∗

)
1
σ
KEP(p2) exp

(
−
1
p2

∣∣∣∣ x− µ
2(1− α∗)σ

∣∣∣∣p2) ,
if x > µ,

(2)

where β = (α, p1, p2, µ, σ )T is the parameter vector, µ ∈ R and
σ > 0 still represent location and scale, respectively, α ∈ (0, 1) is
the skewness parameter, p1 > 0 and p2 > 0 are the left and right
tail parameters, respectively, KEP(p) is the same as in (1), and α∗ is
defined as
α∗ = αKEP(p1)/[αKEP(p1)+ (1− α)KEP(p2)]. (3)
Note that
α

α∗
KEP(p1) =

1− α
1− α∗

KEP(p2)

= αKEP(p1)+ (1− α)KEP(p2) ≡ B. (4)
The AEPD density function is still continuous at every point and
unimodal with mode at µ. The parameter α∗ in the AEPD density
provides scale adjustments respectively to the left and right parts
of the density so as to ensure continuity of the density under
changes of shape parameters (α, p1, p2). If p1 = p2 = p, implying
α∗ = α, the AEPD reduce to a new version of SEPD:
fSEP(x | β)

=


1
σ
KEP(p) exp

(
−
1
p

∣∣∣∣x− µ2ασ

∣∣∣∣p) , if x ≤ µ;

1
σ
KEP(p) exp

(
−
1
p

∣∣∣∣ x− µ
2(1− α)σ

∣∣∣∣p) , if x > µ,

(5)

which is equivalent to those of Fernandez et al. (1995), Theodos-
siou (2000) and Komunjer (2007). This new version of SEPD pro-
vides new interesting interpretations for scale and skewness in
terms of Lp distances. The skewness parameter α ∈ (0, 1) plays
the same role as the parameter γ of Fernandez et al. (1995). By
reparametrization, α = γ 2/(1 + γ 2) and σ = (2/p)1/p(γ +
1/γ )σ ′/2, the SEPD (5)will become that of Fernandez et al. (1995);

2 A referee pointed out various other references (e.g. Arellano-Valle et al. (2005)
and Salinas et al. (2007)) that generalize the class of asymmetric models beyond
power distribution classes, however, none of those classes considers asymmetry in
the tails of the distribution.
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a re-scaling of the density leads to Komunjer’s (2007); letting α =
(1 + λ)/2, σ = θσ ′p−1/p and µ = µ′ − δσ ′, the density will be
that (i.e., f (y | µ′, σ ′, p, λ) in Equation 10) of Theodossiou (2000),
where θ and δ are given in Equations 12 and 13 of Theodossiou
(2000). With α = 1/2, the SEPD (5) reduces to the EPD (1). The
skewed Laplace distribution and skewed normal distribution are
special cases of the SEPD, respectively, with p = 1 and p = 2.
According to the skewness measure of Arnold and Groeneveld
(1995), 1-2CDF(mode), the SEPD density is skewed to the right for
α < 1/2 and to the left for α > 1/2.
A convenient reparametrization of (2) is obtained by rescaling,

fAEP(x | θ)

=


1
σ
exp

(
−
1
p1

∣∣∣∣ x− µ
2ασKEP(p1)

∣∣∣∣p1) , if x ≤ µ;

1
σ
exp

(
−
1
p2

∣∣∣∣ x− µ
2(1− α)σKEP(p2)

∣∣∣∣p2) , if x > µ,

(6)

where θ = (α, p1, p2, µ, σ )T. From the rescaled AEPD density
(6), we can clearly observe the effects of the shape parameters on
the distribution. The density in the form (6) is used in deriving a
closed formexpression for the informationmatrix of themaximum
likelihood estimator (MLE).

3. Interpretation of parameters of AEPD

The main tools that are used for interpretation are various Lr
space related distance measures. Define for r > 0,

dL(r) ≡ [E(|X − µ|r | X ≤ µ)]1/r ,
dR(r) ≡ [E(|X − µ|r | X > µ)]1/r ,

respectively called the Lr -norm deviation (or distance) conditional
on X ≤ µ and the Lr -norm deviation conditional on X > µ. The
total conditional deviation (or distance) is d(r) ≡ dL(r) + dR(r);
the Lr -norm deviation ‖X − µ‖r = (E |X − µ|

r)1/r .
Suppose now that random variable X has the AEPD density

defined in (2) with shape parameters (α, p1, p2), location µ and
scale σ .

Proposition 1. The following relations hold:
(a) P(X ≤ µ) = α; also dL(p1) = 2α∗σ , and dR(p2) =

2(1− α∗)σ , where α∗ is defined in (3);
(b) σ = 1

2 [dL(p1)+ dR(p2)];
(c) there is a positive function r∗(c | p) depending on parameter

p and increasing in its argument, c, such that

α =
dL(r∗(c | p1))

dL(r∗(c | p1))+ dR(r∗(c | p2))
; ∀c > max{lb(p1), lb(p2)}

where lb(p) ≡ [20(1 + 1/p)]−1 exp{ 1pΨ (1/p)} and Ψ (x) ≡
0′(x)/0(x) is a digamma function.
(d) dL(r) = 2α∗σM(p1, r) = 2ασξ(p1, r)/B and dR(r) =

2(1 − α∗)σM(p2, r) = 2(1 − α)σξ(p2, r)/B, where M(p, r) ≡
p1/p{0((r + 1)/p)/0(1/p)}1/r; ξ(p, r) ≡ KEP(p)M(p, r) is strictly
increasing in r and decreasing in p, B and KEP(p) are defined above.

Proof. See Appendix A. �

From part (a) the location µ is the α-quantile of the r.v. X and
the scale σ is related to the left and right Lp conditional deviations
by the parameter α∗ (for the SEPD α∗ = α). Part (b) represents the
scale σ via an average of the left and right conditional deviations.
It follows from (a) that the ratio of the left conditional deviation to
the total is α∗ (for SEPD just α). Part (c) gives an interpretation of α
with two adjusted order functions r∗(c | pi), i = 1, 2; in the SEPD
case (p1 = p2) the left and right conditional deviations enter with
a same order thus then α = dL(r)/d(r) for any r > 0.
Part (d) allows us to investigate the effect of shape parameters
a, p1, p2. These shape parameters have a common effect on both
dL(r) and dR(r) through B = αKEP(p1) + (1 − α)KEP(p2), which
represents a scale adjustment effect. Ignoring the common effect,
α has the same effect on the AEPD as it does on the SEPD, but the
left and right tail parameters, p1and p2, respectively control the
left and right Lr -deviation, dL(r) and dR(r). Since ξ(p, r) is a strictly
decreasing function of p for any given r , a smaller p1 (or p2) leads to
a larger left (or right) Lr -deviation, thus AEPD with a smaller p1 (or
p2) has a heavier left (or right) tail.
The effect of p1 (or p2) on the left (or right) tail can bemeasured

by a generalized kurtosis index kurL(r) (or kurR(r)) for r > 0, called
the left (or right) generalized kurtosis (similar toMineo (1989)who
defined generalized kurtosis as E|X−µ|2p

(E|X−µ|p)
2 and showed that for EPD

it is p+ 1). The left and right (generalized) kurtoses are defined as

kurL(r) ≡ [dL(2r)/dL(r)]2r , kurR(r) ≡ [dR(2r)/dR(r)]2r .

With r = 2 we get the usual definition of kurtosis.

Proposition 2. For the AEPD the left and right (generalized) kurtosis
can be expressed as follows:

kurL(r) = 0
(
1
p1

)
0

(
2r + 1
p1

)/
02
(
r + 1
p1

)
, (7)

kurR(r) = 0
(
1
p2

)
0

(
2r + 1
p2

)/
02
(
r + 1
p2

)
; (8)

they are strictly decreasing respectively in p1 and p2 for any given
r > 0, and strictly increasing in r given p1, p2 > 0.

Proof. See Appendix A. �

From the expressions for kurL(r) and kurR(r) of the AEPD, the
heaviness of the left (or right) tail is controlled by only p1 (or p2).
If p1 < p2, then kurL(r) > kurR(r), implying that the left tail
is heavier than the right. When pi < 2 (i = 1, 2), the AEPD
is more heavy-tailed than the normal distribution. The left (or
right) tail parameter p1 (or p2) is directly related to the left (or
right) generalized kurtosis by the relation: kurL(p1) = p1 + 1 (or
kurR(p2) = p2+1). Further results about kurtosis via moments are
in the next section.
Fig. 1 in Appendix D plots the AEPD densities of the form (6)

with µ = 0 and σ = 1 for combinations of shape parameters
(α, p1, p2). The first plot shows that for given p1 and p2 the density
curve shifts to the right with α decreasing but its mode does not
change; the second plot shows how p2 controls only the right tail
— heavier and heavier for smaller and smaller p2. The effect of
skewness parameter and tail parameters on tails is compared in
the last plot. Although a smaller α leads to a fatter right tail, this
influence eventually is dominated by the effect of a smaller p2.

4. Basic properties of the AEPD

4.1. Cumulative distribution, quantile function and moments

All the formulae in this section follow straightforwardly from
results for the classical EPD (summarized in (III) in Appendix A).
Suppose that X is a random variable with the standard AEPD

density (µ = 0, σ = 1). Denote a ∧ b ≡ min{a, b}, a ∨ b ≡
max{a, b}, by G(x; γ ) the gamma cdf:

G(x; γ ) ≡ (0(γ ))−1
∫ x

0
zγ−1 exp(−z)dz, (9)
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and by G−1(x; γ ) the inverse function of G(x; γ ). Then for the
standard AEPD, the cdf can be expressed via G (·; ·):

FAEP(x | α, p1, p2)

=


α

[
1− G

(
1
p1

(
|x|
2α∗

)p1
;
1
p1

)]
, if x ≤ 0

α + (1− α)G
(
1
p2

(
|x|

2(1− α∗)

)p2
;
1
p2

)
, if x > 0

(10)

and the quantile function is expressed via G−1(·; ·)

F−1AEP(υ | α, p1, p2)

=


−2α∗

[
p1G−1

(
1−

υ

α
;
1
p1

)]1/p1
, if υ ≤ α

2(1− α∗)
[
p2G−1

(
1−

1− υ
1− α

;
1
p2

)]1/p2
, if υ > α

(11)

where υ ∈ [0, 1].
Note that, for any measurable function h(X) of the standard

AEPD random variable X , we have

E[h(X)] = αE[h(X) | X ≤ 0] + (1− α)E[h(X) | X > 0],

implying that all unconditional moments can be expressed as a
weighted sum of two conditional moments. Therefore, we first
give the conditional moments of the standard AEPD r.v. X . From
expression for the absolute moment of EPD (42), we get for any
real r > −1,

E(|X |r | X < 0) = [2α∗]rE
∣∣Zp1 ∣∣r = B−rαrHr(p1), (12)

E(|X |r | X > 0) = [2(1− α∗)]rE
∣∣Zp2 ∣∣r = B−r(1− α)rHr(p2) (13)

where Zp is a random variable that has the standard EPD density
(µ = 0, σp = 1 in (1)) with power index p, B is defined in
(4), Hr(p) ≡ pr0( 1+rp )/0

1+r( 1p ). For any non-negative integer
k, the kth right-conditional moment, E(Xk | X > 0), has the
same expression as in (13), while the k th left-conditionalmoment,
E(Xk | X < 0), has an expression slightly different from (12)3:

E(Xk | X < 0) = [−2α∗]kE
∣∣Zp1 ∣∣k = B−k(−α)kHk(p1).

Thus, the kth moment of the standard AEPD r.v. X equals

E(Xk) = B−k[(−1)kα1+kHk(p1)+ (1− α)1+kHk(p2)],
k = 1, 2, 3, . . . , (14)

and its r-absolute moment is expressed as

E(|X |r) = B−r [α1+rHr(p1)+ (1− α)1+rHr(p2)], r > −1. (15)

In particular, themean and variance of the standard AEPD r.v. X are
given as follows:

E(X) =
1
B

[
(1− α)2

p20(2/p2)
02(1/p2)

− α2
p10(2/p1)
02(1/p1)

]
, (16)

Var(X) =
1
B2

{
(1− α)3

p220(3/p2)
03(1/p2)

+ α3
p210(3/p1)
03(1/p1)

−

[
(1− α)2

p20(2/p2)
02(1/p2)

− α2
p10(2/p1)
02(1/p1)

]2}
. (17)

3 Note that these moments represent lower partial moments which are used in
finance literature as risk measures, see Bawa (1975).
Wesee that allmoments can be expressed simply and conveniently
in terms of gamma function. In the case of the SEPD p1 = p2 = p
and we get simplified expressions for moments:

E(Xk) = (2p1/p)k[(−1)kα1+k + (1− α)1+k]
×0((1+ k)/p)/0(1/p), (18)

E(|X |r) = (2p1/p)r [α1+r + (1− α)1+r ]
×0((1+ r)/p)/0(1/p), (19)

where k = 1, 2, . . . , and r > −1. These provide an advantage
over Azzalini’s (1986) SEPD class where the expressions for
the odd moments involve infinite series expansions; (18) is a
reparametrization of formulae of Fernandez et al. (1995) and
Komunjer (2007).

4.2. Value at risk and expected shortfall

Value at risk (VaR) for return on a portfolio or an asset is defined
as the υ-quantile of the distribution of returns with a negative
value corresponding to a loss. Here the quantile function F−1AEP(υ |
α, p1, p2) of (11) provides VaR at υ for the historical distribution of
returns in the AEPD class, i.e., VaRAEP(υ) ≡ F−1AEP(υ | α, p1, p2). The
Expected Shortfall (ES) of a standard AEPD random variable X,

ESAEP(q) ≡ E(−X | X < q),

also called Conditional Value at Risk (CVaR) represents the negative
expected return (or loss) conditional on it being below the
threshold q. It can be expressed in terms of the gamma CDFs with
parameters 1/p1, 2/p1, 1/p2, and 2/p2:

ESAEP (q)

=



2α∗C(p1)

 1− G
(
1
p1

∣∣ q
2α∗
∣∣p1 ; 2/p1

)
1− G

(
1
p1

∣∣ q
2α∗
∣∣p1 ; 1/p1

)
 , q ≤ 0;

2αα∗C(p1)− 2(1− α)(1− α∗)C(p2)G
(
1
p2
(
|q|

2(1−α∗) )
p2 ; 2/p2

)
α + (1− α)G

(
1
p2
(
|q|

2(1−α∗) )
p2 ; 1/p2

) ,

q > 0,

(20)

where C(p) ≡ p1/p0(2/p)/0(1/p), G(x; γ ) is the gamma cdf given
in (9). Recall that G−1(x; γ ) is the inverse function of G(x; γ ). For
q = VaRAEP(υ), the ES as a function of confidence level υ , denoted
by ES∗AEP(υ), can be expressed as follows:

ES∗AEP(υ)

=



2
υ
αα∗C(p1)

{
1− G

[
G−1

(
α − υ

α
;
1
p1

)
; 2/p1

]}
,

υ ≤ α,
2
υ

{
αα∗C(p1)− (1− α)(1− α∗)C(p2)

× G
[
G−1

(
υ − α

1− α
;
1
p2

)
; 2/p2

]}
, υ > α.

In practice ES is often used in the following form:

E(q− X | X < q) = q+ E(−X | X < q), (21)

which is the average loss when an asset return falls below q; the
expression follows from ESAEP(q) or ES∗AEP(υ).

4.3. Maximum entropy property

In a distribution class maximum entropy is achieved by a
distribution that encodes information in the least biased way
without giving any preferential measure weight to any part of
the distribution (other than what is required by the distribution
class itself). Here we consider a class of absolutely continuous
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distributions with specific shape (moment) constraints on the left
and right deviations and show that the AEPD as defined in (6) has
the maximum entropy property in that class.
Specifically consider for parameters θ = (α, p1, p2, µ, σ ) an

absolute deviation function of x ∈ R scaled differently on two sides
of µ : y(x) = L(x; θ)+ R(x; θ), with

L(x; θ) =
0(1+ 1/p1) |x− µ|

ασ
1(x < µ),

R(x; θ) =
0(1+ 1/p2) |x− µ|

(1− α)σ
1(x > µ).

Define a class Ω(α, p1, p2, µ, σ ) of absolutely continuous distri-
butions having densities p(x)with support (−∞,+∞) that satisfy
the following moment constraints on the left and right deviations
of y(x) :

‖L(x; θ)‖p1 =
(∫

y(x)p11(x < µ)p(x)dx
)1/p1

=

(
α

p1

)1/p1
;

‖R(x; θ)‖p2 =
(∫

y(x)p21(x > µ)p(x)dx
)1/p2

=

(
1− α
p2

)1/p2
.

This class allows for the location µ, scale σ and three shape
parameters α, p1, p2 that produce different effects: when p1 = p2
parameter α alone governs which of the sides gets a larger weight,
when p1, p2 differ the smaller imparts a heavier tail to its side
regardless of a. Thus such a class for fixed values of the parameters
gives rise to distributions that could fit required properties for
shape in terms of the left/right conditional deviations.

Proposition 3. The AEPD distribution in (6) has maximum entropy
in the classΩ(α, p1, p2, µ, σ ).

Proof. See Appendix A. �

5. Asymptotic properties of themaximum likelihood estimator

Since AEPD generalizes the EPD and SEPD classes, we note
the asymptotic results available for the latter two classes. The
MLE for the EPD parameters and its properties are investigated in
Agrò (1995) where the informationmatrix I(β) and the covariance
matrix are derived; for p > 2 consistency, asymptotic normality
and efficiency of MLE are proved; other theoretical results for the
MLE are available when p is known. Ayebo and Kozubowski (2004)
focused on estimators of scale σ and skewness parameter α in
the SEPD by assuming that location µ and tail parameter p are
known; they gave the expressions for theMLEs of σ and α, showed
that they are consistent, asymptotically normal and efficient and
provided the asymptotic covariance matrix for this subset of
parameters. DiCiccio and Monti (2004) investigated properties of
the MLE of all parameters for the Azzalini’s SEPD class, but they
did not give a closed-form expression for information matrix and
did not provide a rigorous proof of asymptotics for the MLEs
which is needed due to the non-smoothness of the log-likelihood
function. Here we establish consistency, asymptotic normality and
efficiency for MLE of all parameters in the AEPD class (which nests
EPD and SEPD) with p1 > 1 and p2 > 1, and provide a closed-form
asymptotic covariance matrix of the MLE.
Suppose that the true density f (y | θ0) with θ0 =

(α0, p01, p02, µ0, σ0) belongs to the AEPD class (given in (6)) with
parameter vector θ in a parameter space Θ ⊂ Ξ ≡ {θ | θ =

(α, p1, p2, µ, σ ), σ , p1, p2 > 0, α ∈ (0, 1), µ ∈ R}, where Θ is
assumed to be a compact set and θ0 to be an interior point ofΘ . For
a random sample y = (y1, y2, . . . , yT ), the log-likelihood function
lT (θ | y) ≡

∑T
t=1 ln f (yt | θ) is given as follows:

lT (θ | y) = −T ln σ −
T∑
t=1

(
0(1+ 1/p1)(µ− yt)

ασ

)p1
1(yt ≤ µ)

−

T∑
t=1

(
0(1+ 1/p2)(yt − µ)

(1− α)σ

)p2
1(yt > µ).

Note that the AEPD does not satisfy the regularity conditions under
which the ML estimator has the usual

√
T -asymptotics, because of

a non-differentiable likelihood function. However, we nonetheless
establish consistency of the MLE by using Theorem 2.5 in Newey
and McFadden (1994) and under certain parameter restrictions
establish the usual asymptotic normality for the AEPD’s MLE by
using Theorem 3 as well as its corollary in Huber (1967).

Proposition 4. (Consistency of MLE). The MLE θ̂ of θ0 is consistent,
i.e., θ̂→p θ0.

Proof. See Appendix C. �

Proposition 5. The information matrix equality I(θ0) = −H(θ0)
holds for p01 > 1/2, p02 > 1/2. The elements of the Fisher
information matrix, φij,

φij ≡ E[∂ ln f (yt; θ0)/∂θi] · [∂ ln f (yt; θ0)/∂θj], (22)

with φij = φji and θj the jth element of parameter vector θ =
(α, p1, p2, µ, σ )T, are as follows4:

φ11 =
p1 + 1
α
+
p2 + 1
1− α

, φ12 = −
1
p1
, φ13 =

1
p2
,

φ14 = −
1
σ

(
p1
α
+

p2
1− α

)
,

φ15 =
p1 − p2
σ

, φ22 =
α

p31
(1+ 1/p1)Ψ ′(1+ 1/p1),

φ23 = 0, φ25 = −
α

σp1
,

φ24 =
1
σp1

[Ψ (2)− Ψ (1+ 1/p1)] ,

φ35 = −
1− α
σp2

, φ55 =
αp1 + (1− α)p2

σ 2
,

φ33 =
1− α
p32

(1+ 1/p2)Ψ ′(1+ 1/p2),

φ34 = −
1
σp2

[Ψ (2)− Ψ (1+ 1/p2)] ,

φ44 =
0(1/p1)0(2− 1/p1)

ασ 2
+
0(1/p2)0(2− 1/p2)

(1− α)σ 2
,

φ45 =
1
σ 2
(p2 − p1),

(23)

where all theφij are evaluated at the true values (α0, p01, p02, µ0, σ0).

Proof. See Appendix B. �

The information matrix for the MLE of the SEPD is given below;
to our knowledge these results were not available in the literature
so far.

4 By using 0(x)0(1− x) = π/ sin(πx) (see Artin (1964, p 26), or Farrell and Ross
(1963, p 39)), the element of φ44 can also be expressed as

φ44 =
π

σ 2

[
1− 1/p1
α sin(π/p1)

+
1− 1/p2

(1− α) sin(π/p2)

]
.
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Corollary 6. For the SEPD (p1 = p2 = p), ∂ ln f∂p =
∂ ln f
∂p1
+

∂ ln f
∂p2
from

(48); the terms φij involving p1 and p2, become φ12+φ13, φ22+φ33,
φ24 + φ34 and φ25 + φ35. The information matrix for the MLE of the
SEPD parameters (α, p, µ, σ ) is:

I(θ0) = −H(θ0)

=



p+ 1
α(1− α)

0 −
p

σα(1− α)
0

0
p+ 1
p4

Ψ ′(
p+ 1
p

) 0 −
1
σp

−
p

σα(1− α)
0

0(1/p)0(2− 1/p)
σ 2α(1− α)

0

0 −
1
σp

0
p
σ 2


.

Proposition 7. (Asymptotic Normality ofMLE) Suppose that p01 > 1
and p02 > 1. Then the MLE θ̂ of θ0 is asymptotically normal, i.e.,
√
T (̂θ − θ0)→d N(0, I−1(θ0)),

where I(θ0) is the Fisher information matrix:

I(θ0) ≡ E[(∇θ ln f (Yt | θ0))(∇θ ln f (Yt | θ0))′]

provided by (23); it can be consistently estimated by I (̂θ).

Proof. See Appendix C. �

The information matrix equality I(θ0) = −H(θ0) holds only
for p01 > 1/2 and p02 > 1/2, because E[ ∂ ln f

∂µ
]
2 as an element

of I(θ0) may not exist or may be negative for some points of
p01 ≤ 1/2 and (or) p02 ≤ 1/2. Since I(θ) is continuous for
all θ ∈ Ξ satisfying p1 > 1/2 and p2 > 1/2, it follows
from the consistency of θ̂ that I (̂θ) is a consistent estimator of
I(θ0). The restriction p01 > 1 and p02 > 1 ensures that the
expected score vector converges uniformly in the neighborhood of
the location parameter and is required for the estimation of the
location parameter. The restriction is not an impediment in most
applications. Even for the GARCH option pricing model with GED
conditional distribution in Duan (1999), this restriction is imposed
in order to ensure the existence of the expected simple return. If
µ0 is known, then the usual

√
T -asymptotics hold for the MLEs

of other parameters (α0, p01, p02, σ0) without any restrictions.
When location parameter µ0 can be consistently estimated
by a nonparametric method (see Andrews et al. (1972) and
Bickel (2002)), the MLEs of other parameters are still consistent,
asymptotically normal but may not be efficient.

6. Performance of MLE in simulation

A stochastic representation of a distribution is important to
simulation studies. For given values of parameters, p1, p2 and α
(0 < α < 1, pi > 0, i = 1, 2), we can generate standard
AEPD random numbers by the following method: first, generate
three random numbers U , W1 and W2, where U is drawn from
standard uniform distribution U(0, 1) andWi (i = 1, 2) is from the
gamma distribution with shape parameter 1/pi and pdf fWi(w) =
0(1/pi)−1w1/pi−1 exp(−w); second, define a random variable Y :

Y = αW 1/p11

[
sign(U − α)− 1
20(1+ 1/p1)

]
+ (1− α)W 1/p22

[
sign(U − α)+ 1
20(1+ 1/p2)

]
, (24)

where sign(x) = +1 if x > 0,−1 if x < 0, and 0 if x = 0. It
is straightforward to show that random variable Y has the density
(6) of standard AEPD (location µ = 0, scale σ = 1). An alternative
method is the inverse method, i.e., using Y = F−1AEP(U) to generate
standard AEPD random numbers, where U is a standard uniform
random variable and FAEP is the standard AEPD cdf. However, this
method is very time-consuming, while the method given in (24)
allows us to generate AEPD random numbers more quickly in
Matlab.
To assess the asymptotic properties of the MLE in finite

samples, following Agrò (1995), a numerical investigation of bias
and variance of MLEs was made using sample sizes of T =
500, 1000, 2000, 4000, 8000. We choose µ0 = 0, σ0 = 1 and
various different true values of (α, p1, p2): α = 0.3, 0.5 and
pi = 0.7, 1, 1.5, 2.5 (i = 1, 2). To save space, here we only
report the cases of α = 0.3 and p2 = 1, 1.5. For each set of true
values of parameters and every sample size,N = 2000 replications
are drawn from the AEPD with the set of parameter values, and
then N = 2000 ML estimates θ̂ i (i = 1, 2, . . . ,N) are obtained
using these samples. So, we can estimate the means and standard
deviations of the MLEs of parameters, denoted respectively by
M (̂θ) and STD(̂θ),

M (̂θ) =
1
N

N∑
i=1

θ̂ i,

STD(̂θ) =

(
1
N

N∑
i=1

[̂
θ i −M (̂θ)

]2)1/2
,

and compare these estimated standard deviations with their
theoretical values which are taken from the square root of
the diagonal elements of Cramer–Rao bound (i.e., I−1(̂θ)/T ).
Simulation results are presented in Table 1. All entries labeled
‘‘Mean ofMLEs’’ reportM (̂θ), and those in ‘‘STD Ratio’’ rows are the
ratios of simulated standard deviations STD(̂θ) to the theoretical
ones from I−1(̂θ)/T .
From our simulation studies, we can see that the estimates

θ̂ of all parameters seem asymptotically unbiased for all given
true values, and that their variance seems to be approaching the
Cramer–Rao bound for the cases of p01 > 1 and p02 > 1
(see the cases in which (p01, p02) = (1.5, 1.5) and (2.5, 1.5)).
However, for the cases of p01 ≤ 1 or p02 ≤ 1, the behavior of
the variance appears to be problematic.More specifically, although
the estimates of scale σ appear always efficient in all cases, there
are significantly large ratios of standard deviation for the other
parameters, especially for µ and α; but the larger the values of
the tail parameters, p1 and p2, the more efficient the estimates of
α and µ appear to be. Other observed phenomena are that (1),
because of fewer observations on the left side, estimates of the left
tail parameter p1 have slower convergence and lower efficiency
than those of the right tail p2 (see the cases in which p01 = p02 =
1 or 1.5); (2), in general, the MLE is more efficient in the cases
with larger tail parameter p1 or p2 than for those with smaller tail
parameters. Finally, we want to point out that for a small sample,
say a size less than 500, the likelihood function may not have
any maximum point. This problem still exists for the GED and is
discussed in detail in Agrò (1995).

7. Forecasting value at risk: An empirical examination

In this section, we examine forecast for value at risk (VaR)
with GARCH type model and compare performance for error
distributions given by GED, SEPD and our AEPD.

7.1. Model and data

GARCH type models have been widely and successfully used to
model financial asset returns. In general, a return process r = {rt}
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Table 1
Simulation results for the MLE of the AEPD.

P2 = 1 P2 = 1.5
alpha = 0.3 p1 = 0.7 p2 = 1 sigma = 1 mu = 0 alpha = 0.3 p1 = 0.7 p2 = 1.5 sigma = 1 mu = 0 T

0.3042 0.7125 1.0049 1.0008 0.0056 0.3041 0.7100 1.5090 0.9966 0.0053 500
0.3021 0.7050 1.0004 0.9986 0.0033 0.3030 0.7068 1.5027 0.9985 0.0038 1000

Mean of 0.3013 0.7032 1.0008 0.9999 0.0017 0.3013 0.7032 1.5012 0.9992 0.0016 2000
MLEs 0.3005 0.7013 0.9999 0.9991 0.0007 0.3004 0.7012 1.5006 0.9995 0.0003 4000

0.3003 0.7004 0.9993 0.9991 0.0004 0.3002 0.7007 1.4998 0.9995 0.0003 8000

alpha = 0.3 p1 = 0.7 p2 = 1 sigma = 1 mu = 0 alpha = 0.3 p1 = 0.7 p2 = 1.5 sigma = 1 mu = 0 T

1.172 1.137 1.066 1.038 1.437 1.140 1.107 1.086 1.026 1.343 500
1.342 1.126 1.115 1.016 1.612 1.331 1.172 1.128 1.032 1.557 1000

STD ratio 1.334 1.120 1.077 1.011 1.565 1.318 1.124 1.138 1.031 1.545 2000
1.280 1.104 1.069 1.022 1.479 1.230 1.071 1.126 1.039 1.418 4000
1.224 1.097 1.048 1.002 1.375 1.196 1.065 1.110 1.041 1.350 8000

alpha = 0.3 p1 = 1 p2 = 1 sigma = 1 mu = 0 alpha = 0.3 p1 = 1 p2 = 1.5 sigma = 1 mu = 0 T

0.3045 1.0272 1.0065 1.0052 0.0062 0.3082 1.0318 1.5104 1.0012 0.0095 500
0.3019 1.0141 1.0050 1.0045 0.0024 0.3023 1.0121 1.5104 1.0019 0.0022 1000

Mean of 0.3005 1.0058 1.0036 1.0024 0.0009 0.3008 1.0048 1.5047 1.0007 0.0007 2000
MLEs 0.2999 1.0019 1.0017 1.0007 0.0002 0.3005 1.0026 1.5009 1.0000 0.0004 4000

0.2999 1.0008 1.0010 1.0004 0.0000 0.3004 1.0021 1.5005 1.0000 0.0004 8000

alpha = 0.3 p1 = 1 p2 = 1 sigma = 1 mu = 0 alpha = 0.3 p1 = 1 p2 = 1.5 sigma = 1 mu = 0 T

1.178 1.185 1.092 1.032 1.264 1.175 1.184 1.094 1.021 1.215 500
1.250 1.186 1.076 1.019 1.321 1.201 1.167 1.087 1.023 1.250 1000

STD ratio 1.183 1.124 1.060 1.020 1.243 1.165 1.110 1.059 0.987 1.196 2000
1.114 1.072 1.042 0.999 1.146 1.077 1.026 1.028 0.982 1.101 4000
1.099 1.035 1.034 0.992 1.127 1.043 1.015 1.013 0.982 1.054 8000

alpha = 0.3 p1 = 1.5 p2 = 1 sigma = 1 mu = 0 alpha = 0.3 p1 = 1.5 p2 = 1.5 sigma = 1 mu = 0 T

0.3081 1.5894 1.0014 1.0079 0.0097 0.3126 1.5894 1.5049 1.0064 0.0142 500
0.3060 1.5568 0.9989 1.0054 0.0074 0.3067 1.5499 1.5052 1.0047 0.0070 1000

Mean of 0.3030 1.5293 1.0001 1.0027 0.0039 0.3029 1.5233 1.5035 1.0021 0.0032 2000
MLEs 0.3015 1.5158 1.0004 1.0020 0.0019 0.3012 1.5108 1.5028 1.0017 0.0013 4000

0.3010 1.5092 1.0002 1.0011 0.0012 0.3005 1.5060 1.5025 1.0013 0.0006 8000

alpha = 0.3 p1 = 1.5 p2 = 1 sigma = 1 mu = 0 alpha = 0.3 p1 = 1.5 p2 = 1.5 sigma = 1 mu = 0 T

1.085 1.116 1.111 1.026 1.116 1.048 1.142 1.078 1.027 1.073 500
1.187 1.184 1.090 1.032 1.206 1.125 1.152 1.089 1.031 1.135 1000

STD ratio 1.137 1.129 1.041 1.023 1.159 1.089 1.102 1.072 1.013 1.092 2000
1.104 1.085 1.041 1.011 1.111 1.069 1.069 1.046 0.998 1.064 4000
1.068 1.053 1.034 0.996 1.068 1.036 1.046 1.025 1.001 1.036 8000

alpha = 0.3 p1 = 2.5 p2 = 1 sigma = 1 mu = 0 alpha = 0.3 p1 = 2.5 p2 = 1.5 sigma = 1 mu = 0 T

0.3013 2.6811 1.0059 1.0029 0.0037 0.3188 2.8367 1.4925 1.0106 0.0231 500
0.3016 2.5976 1.0013 1.0016 0.0034 0.3121 2.6939 1.4951 1.0078 0.0146 1000

Mean of 0.3018 2.5616 1.0003 1.0025 0.0026 0.3057 2.5887 1.4972 1.0030 0.0068 2000
MLEs 0.3019 2.5405 0.9998 1.0020 0.0024 0.3027 2.5405 1.4973 1.0006 0.0032 4000

0.3007 2.5149 0.9998 1.0004 0.0010 0.3017 2.5265 1.4992 1.0007 0.0019 8000

alpha = 0.3 p1 = 2.5 p2 = 1 sigma = 1 mu = 0 alpha = 0.3 p1 = 2.5 p2 = 1.5 sigma = 1 mu = 0 T

0.994 1.089 1.088 1.007 1.010 0.869 1.007 0.997 1.047 0.893 500
1.109 1.142 1.070 1.043 1.135 0.974 1.042 1.025 1.035 0.991 1000

STD ratio 1.126 1.125 1.080 1.046 1.129 1.008 1.048 1.030 1.021 1.019 2000
1.116 1.114 1.058 1.068 1.122 0.993 1.024 1.004 1.025 0.997 4000
1.063 1.079 1.033 1.036 1.072 0.987 1.012 1.000 1.016 0.991 8000
is modeled as5

rt = mt + σtzt , (25)

where, following tradition,mt andσ 2t are the conditionalmean and
variance of rt given the information set available at time t − 1 (i.e.,
mt = Et−1(rt) and σ 2t = Et−1(rt−mt)

2), zt are the i.i.d. innovations
with zero mean and unit variance.
To capture the leverage effect, we adopt the non-linear

asymmetric GARCH (NGARCH) structure of Engle and Ng (1993).
The conditional distribution of the return process is modelled as
the AEPD type distribution. For simplicity, we assumemt = m, for

5 As noted by Andersen et al. (2005), this representation is not entirely general
as there could be higher-order conditional dependence in the innovations.
any t; the return series rt is an AEPD-NGARCH(1, 1) process,

rt = m+ σtzt , zt ∼ i.i.d.AEPD(0, 1),

σ 2t = b0 + b1σ
2
t−1 + b2σ

2
t−1(zt−1 − c)

2

= b0 + b1σ 2t−1 + b2(rt−1 −m− cσt−1)
2. (26)

The parameter c in the NGARCH equation (26) captures the
leverage effect; that is, a positive value of c gives rise to a negative
correlation between the innovations in the asset return and its
conditional volatility. The j-step-ahead forecast of σ 2t+j, denoted by
σ 2t+j|t , is defined as σ

2
t+j|t ≡ Et

(
σ 2t+j

)
; it is

σ 2t+1|t = b0 + b1σ
2
t + b2(rt −m− cσt)

2, (27)

σ 2t+j|t = b0 +
[
b1 + b2(1+ c2)

]
σ 2t+j−1|t , j ≥ 2. (28)
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Table 2
Parameter estimates for the AEPD-NGARCH(1, 1) models.

m b0 b1 b2 c α p1 p2

AEPD .0254 .0089 .8918 .0583 .8802 .400 1.182 1.820
(.014) (.002) (.014) (.008) (.119) (.01) (.049) (.084)

AEPD, α = 0.5 .019 .010 .8852 .0603 .9071 1.384 1.539
(.013) (.003) (.015) (.008) (.115) (.05) (.065)

SEPD .0218 .010 .884 .0604 .914 .522 1.449
(.014) (.003) (.015) (.009) (.119) (.011) (.049)

GED .0296 .0095 .8853 .0597 .9111 1.437
(.013) (.003) (.015) (.009) (.119) (.048)

We consider daily returns6 on the S&P500 composite index.
Empirical evidence has indicated that high frequency data
continue to exhibit conditional tail-fatness even after allowing for
the GARCH effect (see Bollerslev et al. (1992)). Our sample covers
the period from January 2, 1990 to December 31, 2002, and the
sample size is T = 3280. The data set is from CRSP (Center for
Research in Security Prices, University of Chicago).

7.2. Estimation and goodness of fit

The maximum likelihood estimate of the parameter vector φ,
where φ = (m, b0, b1, b2, c, α, p1, p2), is obtained by maximizing
the log-likelihood function

L(φ; r) =
T∑
t=1

{
log δ − log σt + log fY

(
ω + δ

rt −m
σt
| β

)}
, (29)

where fY (· | β) is the standard density function of the AEPD with
the distributional parameters β = (α, p1, p2)′, ω ≡ ω(β) and
δ ≡ δ(β) denote the mean and standard deviation of fY (· | β)
respectively and as functions of β both are given in (16) and (17).7
To show the significance of asymmetric behavior in the tails, we

consider the AEPD and nested distribution classes: the AEPD with
α = 1/2 to represent asymmetry arising only from different tail
behavior, the SEPD (i.e., AEPD with p1 = p2), the GED (i.e., AEPD
with α = 1/2 and p1 = p2). The ML estimates of the parameters
and their standard deviations are displayed in Table 2.
Following Mittnik and Paolella (2003), we employ four criteria

for comparing the goodness of fit of the candidatemodels. The first
is themaximum log-likelihood value (L), which can be viewed as an
overall measure of goodness of fit. The second and the third are the
AICC (Hurvich and Tsai, 1989) and the SBC or SIC (Schwarz, 1978),
which modify the AIC , and are given by

AICC = −2L+
2T (k+ 1)
T − k− 2

, SBC = −2L+
k log(T )
T
; (30)

k denotes the number of estimated parameters and T the number
of observations. The fourth is the Anderson–Darling statistic
(Anderson and Darling, 1952), defined as

AD =
√
T sup
x∈R

∣∣FT (x)− F̂(x)∣∣√
F̂(x)(1− F̂(x))

, (31)

where F̂(x) denotes the estimated (parametric) cdf of innovation,
and FT (x) is the empirical cdf of (ex post) innovations, i.e.,
FT (x) = n/T if there are only n ex postinnovations ẑt = (rt−m̂)/σ̂t
less or equal to x for any given x.

6 The return rt in period t is defined as rt = 100× (Pt − Pt−1)/Pt−1 , where Pt is
the Level on S&P Composite Index at time t .
7 The ML estimation is implemented in Matlab 6.1 with the command ‘fmincon’
and initial value φ0 = (mean(r), b0, 0.9, 0.05, 0, 0.5, 1.5, 1.5), where b0 is given
by the variance of returns data multiplied by 1− b1 − b2 = 0.05.
Table 3
Goodness-of-fit measures for the AEPD-NGARCH(1, 1) models.

L AICC SBC AD

AEPD −4255.7 8529.4 8511.4 8.35
AEPD, α = 0.5 −4260.0 8536.0 8520.0 15.53
SEPD −4262.3 8540.6 8524.6 21.65
GED −4264.1 8542.2 8528.2 27.54

The AD statistic is a reasonable measure of the discrepancy or
‘‘distance’’ between the two distributions, say, the empirical cdf
FT (x) and the hypothetical distribution F(x); this statistic gives
appropriate weight to the tails of the distribution so that it can be
used to measure goodness of fit in the tails. In our applications,
since the innovations are assumed to have zero mean and unit
variance, the estimated cdf of the innovations, F̂(x) in (31), can be
expressed as F̂(x) = FY (ω̂ + δ̂x | β̂), where FY (· | β) is the cdf
of the standard AEPD with β = (α, p1, p2)T, β̂ is the ML estimate
of β , and ω̂ and δ̂ are given by ω̂ = ω(β̂) and δ̂ = δ(β̂), which
are, respectively, the estimated mean and standard deviation of
FY (· | β). For simplicity we compute the AD statistic as follows:

AD = max
j
ADj, ADj =

√
T

∣∣FT (̂zj,T )− F̂ (̂zj,T )∣∣√
F̂ (̂zj,T )(1− F̂ (̂zj,T ))

, (32)

where
{̂
zj,T
}T
j=1 are the sorted (in ascending order) ex post

innovations, thus FT (̂zj,T ) = j/T .
Table 3 displays the four measures of goodness-of-fit for

the estimated AEPD-NGARCH(1,1) models. All measures rank
the distribution with full asymmetry as the best, followed by
asymmetry in tails only, skewness only, and then symmetry in a
descending order.

7.3. Prediction performance for downside risk

To predict the downside risk (VaR) in the period t + j (j =
1, 2, 3, . . .) using the information available in period t , we must
give a j-step-ahead forecast of the conditional distribution of
returns rt+j, F̂t+j|t(rt+j). Based on the above models specified in
(25) and (26), the conditional distribution is time-varying only
due to the time-varying conditional mean and variance. Therefore
forecasting the conditional distribution boils down to estimating
the parameters of the model using the data available at time t ,
and then forecasting the conditional mean (mt+j) and variance
(σ 2t+j) of rt+j. Denote the time-t ML estimates of these parameters
by (m̂t , b̂0t , b̂1t , b̂2t , ĉt , β̂ ′t) and the estimates of the j-step-ahead
forecasts of mt+j and σ 2t+j by m̂t+j|t and σ̂

2
t+j|t , respectively. Then,

m̂t+j|t = m̂t for any j, and σ̂ 2t+j|t is obtained by substituting the
estimated parameters into (27) and (28),

σ̂ 2t+1|t = b̂0t + b̂1t σ̂
2
t + b̂2t(rt − m̂t − ĉt σ̂t)

2,

σ̂ 2t+j|t = b̂0t +
[̂
b1t + b̂2t(1+ ĉ2t )

]
σ̂ 2t+j−1|t , j ≥ 2.

Nowwe consider estimation of the j-step-ahead forecast of the
conditional VaR. Note that zt+j = (rt+j − m)/σt+j is assumed to
be an AEPD random variable with zero mean and unit variance.
Then, based on the predicted values m̂t+j|t , σ̂t+j|t , ω̂t = ω(β̂t) and
δ̂t = δ(β̂t), where ω(·) and δ(·) are defined in (29), we expect at
time t that, conditional on the information available in period t ,

ŶAEP ≡ ω̂t + δ̂t(rt+j − m̂t+j|t)/σ̂t+j|t
should approximately have a standard AEPD density with param-
eter β̂t if the model specification is correct. Therefore, the j-step-
ahead forecast of the conditional VaR can be estimated as follows:

VaRt+j|t(p) ≡ F̂−1t+j|t(p) = m̂t+j|t + σ̂t+j|t

[
F−1AEP(p | β̂t)− ω̂t

δ̂t

]
. (33)
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Table 4
Predictive performance for the value at risk (VaR).

p 0.01 0.025 0.05 0.10

f̂j(p) f̂1(p), f̂5(p) f̂1(p), f̂5(p) f̂1(p), f̂5(p) f̂1(p), f̂5(p)

AEPD .0110, .0122 .0250, .0263 .0537, .0538 .1232, .1222
AEPD, α = 0.5 .0116, .0134 .0250, .0275 .0506, .0526 .1152, .1143
SEPD .0128, .0153 .0268, .0287 .0543, .0544 .1165, .1161
GED .0146, .0165 .0299, .0293 .0598, .0575 .1195, .1204

Note that, in the calculation of the conditional VaR, we also need
to give the expressions for F−1AEP(p | β), i.e., the quantile function
(see (11)). Therefore, the downside risk is determined not only by
the specification of the conditional mean and NGARCH equations,
but also by the distributional choice for the innovations. We can
express the predictive downside risk as follows: after j periods, the
return would be less than VaRt+j|t(p)with probability p.
To see predictive performance out-of-sample, we split the

sample in two: N = T/2 = 1640. Then we evaluate VaRt+j|t(p),
N = 1640 ≤ t ≤ T − j, for one and five steps ahead: j = 1, 5. We
set the shortfall probabilities p = 0.01, 0.025, 0.05, 0.1. For each
of (j, p), if the model is correctly specified we expect 100p% of the
observed rt+j-values (rN+j, . . . , rT ) to be less than the VaRt+j|t(p)
implied by the model. If the observed frequency

f̂j(p) =
1

T − N − j+ 1

T−j∑
t=N

1{rt+j < VaRt+j|t(p)} (34)

is lower (higher) than p, then the model tends to overestimate
(underestimate) the risk.
Table 4 shows the predictive performance of VaR; the entries

in the table are the observed frequency f̂j(p) given in (34) for one
and five steps ahead: j = 1, 5, and shortfall probabilities p =
0.01, 0.025, 0.05, 0.1. All the models tend to underestimate the
value at risk, but the models with AEPD errors perform noticeably
better than those with a single tail parameter. For small shortfall
probabilities (p = 0.01, 0.025), the unrestricted AEPD is the best;
for the p = 0.05 and 0.1, the AEPD with α = .5 dominates.
Thus both by measures of fit and by forecasting performance

the AEPD class provides a useful model for the error in GARCH type
model of returns on assets.
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Appendix A

The proofs make extensive use of several results.
(I) Integral (see Gradshteyn and Ryzhik (1994). #3.478)∫
∞

0
xv−1 exp(−µxp)dx =

1
p
µ−v/p0

(
v

p

)
,

for µ > 0, v > 0, p > 0. (35)

(II) For the gamma function 0(x) and digamma functionΨ (x) ≡
0′(x)/0(x):

Ψ (x) = −C −
1
x
+

∞∑
i=1

(
1
i
−

1
x+ i

)
,

Ψ (k)(x) =
∞∑
i=0

k(−1)k+1

(x+ i)k+1
, (36)

0(x+ 1) = x0(x),
0′(x+ 1)/0(x) = 1+ xΨ (x), (37)

0′′(x)/0(x) = Ψ ′(x)+ Ψ 2(x), (38)

0′′(x+ 1)/0(x) = 2Ψ (x)+ xΨ 2(x)+ xΨ ′(x), (39)

where C is Euler’s constant, k any positive integer. More properties
and details are in Abramowitz and Stegun (1970, p 255–263), Artin
(1964, p 16–26) and Farrell and Ross (1963).

(III) Properties of EPD (based on Box and Tiao (1973) and Kotz
et al. (2001)).

For Zp with standard EPD density (µ = 0, σp = 1) in (1) the cdf
and quantile function are

FEP(x | p) =
1
2

[
1+ sign(x)G

(
1
p
|x|p ;

1
p

)]
, (40)

F−1EP (υ | p) = sign(2υ − 1)
[
pG−1

(
|2υ − 1| ;

1
p

)]1/p
, (41)

G(x; γ ) is the gamma cdf, and G−1(x; γ ) is the inverse function
of G(x; γ ). By change of variable, (35), for M(p, r) (see Proposi-
tion 1(d)) the absolute moment is

E(
∣∣Zp∣∣r) = pr/p0 ( r + 1p

)/
0(1/p) ≡ [M(p, r)]r ,

r > −1. (42)

The expected shortfall of Zp, ESEP(x | p) ≡ E(−Zp | Zp < x), is:

ESEP(x | p) = p1/p
0(2/p)
0(1/p)

[
1− G( 1p |x|

p
; 2/p)

1+ sign(x)G( 1p |x|
p
; 1/p)

]
. (43)

For x = VaREP(υ) ≡ F−1EP (υ | p), ES as a function of confidence
level υ , ES∗EP(υ | p), is

ES∗EP(υ | p)

= p1/p
0(2/p)
0(1/p)

1
2υ

{
1− G

[
G−1

(
|2υ − 1| ;

1
p

)
; 2/p

]}
. (44)

Proof of Proposition 1. The result P(X ≤ µ) = α follows directly
from (10). Proofs of other equalities in (a), (b), (d) of Proposition 1
boil down to calculations of dL(r) and dR(r). For dR(r) of the
standard AEPD (µ = 0, σ = 1), by change of variable z =
x/[2(1− α∗)] and (42) or (35), we have

dR(r) =
{
E[|X |r | X > 0]

}1/r
=

{∫
∞

0
xr fAEP (x;α, p1, p2)

1
1− α

dx
}1/r

= 2(1− α∗)
{
2
∫
∞

0
zrKEP(p2) exp

(
−
1
p2
zp2
)
dz
}1/r

= 2(1− α∗){E(|Zp2 |
r)}1/r = 2(1− α∗)M(p2, r).
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To prove that ξ(p, r) ≡ KEP(p)M(p, r) is strictly increasing in r ,
we evaluate the derivative of lnM(p, r)with respect to r and show
∂ lnM(p,r)

∂r > 0. Note that

∂ lnM(p, r)
∂r

=
1
pr
Ψ

(
r + 1
p

)
−
1
r2
[log0((r + 1)/p)− log0(1/p)].

By the mean value theorem, we have

∂ lnM(p, r)
∂r

=
1
pr

[
Ψ

(
r + 1
p

)
− Ψ

(
εr + 1
p

)]
,

where 0 < ε < 1.

Since Ψ ′(x) is positive for any x > 0 (see Abramowitz and Stegun
(1970), 6.4.10), it follows that ∂ lnM(p,r)

∂r > 0 for any r > 0 and
p > 0.
To show that ξ(p, r) is strictly decreasing in p for any given

r > 0, write

∂ ln ξ(p, r)
∂p

=
1
p2
Ψ (1+ 1/p)

+
1
pr

[
1
p
Ψ

(
1
p

)
−
r + 1
p

Ψ

(
r + 1
p

)]
,

and note that the second part of the above expression, denoted by
h(p, r),

h(p, r) =
C
p2
+

∞∑
i=1

1
pr

[
gi

(
1
p

)
− gi

(
r + 1
p

)]
, (45)

where gi(x) ≡ x/i − x/(i + x), C is Euler’s constant and (45)
for h(p, r) is based on (36). From the mean value theorem and
g ′i (x) > 0, g ′′i (x) > 0 for any x > 0 and i ≥ 1, it follows that

hi(p, r) ≡ 1
pr

[
gi( 1p )− gi(

r+1
p )
]
is strictly decreasing in r for every

i ≥ 1; so h(p, r) is a decreasing function of r . Therefore, for r > 0

∂ ln ξ(p, r)
∂p

<
1
p2
Ψ (1+ 1/p)+ lim

r→0+

1
pr

[
1
p
Ψ

(
1
p

)
−
r + 1
p

Ψ

(
r + 1
p

)]
=
1
p2

[
p−

1
p
Ψ ′
(
1
p

)]
= −

(
1
p

)3 ∞∑
i=1

1
(i+ 1/p)2

< 0,

since Ψ (1 + x) = Ψ (x) + 1/x by (37); the last equality uses (36)
for Ψ ′(x).
To prove Proposition 1(c), define an increasing function r =

r∗(c | p) ≡ ξ−1(c | p) for a given p. Note that ξ(p, r) ↓ lb(p)
as r ↓ 0 and ξ(p, r) ↑ +∞ as r ↑ +∞ (by using Equality 6.1.20
in Abramowitz and Stegun (1970)). When c > lb(p), r = ξ−1(c |
p) > 0 and thus r∗(c | p1) > 0 and r∗(c | p2) > 0 for any
c > max{lb(p1), lb(p2)}. Using definition of r∗(c | p) and equalities
in Proposition 1(d), we get Proposition 1(c). �

Proof of Proposition 2. The expressions for kurL(r) and kurR(r)
in Proposition 2 are easily obtained using equalities in Proposi-
tion 1(d). Here we prove only that k(r, p) ≡ 0( 1p )0(

2r+1
p )/02

( r+1p ) is strictly decreasing in p and increasing in r . The second
point follows from

∂ ln k(r, p)
∂r

=
2
p

[
Ψ

(
2r + 1
p

)
− Ψ

(
r + 1
p

)]
, p > 0, r > 0
and Ψ ′(x) > 0 (see (36)), implying ∂ ln k(r,p)
∂r > 0 for any r >

0, p > 0. The first point follows from

∂ ln k(r, p)
∂p

=
1
p

[
−ρ

(
2r + 1
p

)
− ρ

(
1
p

)
+ 2ρ

(
r + 1
p

)]
,

where ρ(x) = xΨ (x) is strictly convex in (0,+∞) (from (36)
ρ ′′(x) = 2

∑
∞

i=0 i/(i + x)
3 > 0 for any x > 0). Then ∂ ln k(r,p)

∂p < 0
for any p > 0 and r > 0. �

Proof of Proposition 3. The entropy of a distributionwith density
f (x; θ) is by definition

H(f ) ≡ −
∫
+∞

−∞

f (x; θ) ln f (x; θ)dx.

A straightforward calculation shows that for AEPD

H(f ) = ln σ +
α

p1
+
1− α
p2

.

By Theorem 13.2.1 of Kagan et al. (1973) (also see Proposition 2.4.6
in Kotz et al. (2001)) for all densities p(x) supported on (−∞,+∞)
that satisfy:∫
+∞

−∞

[L(x; θ)]p1p(x)dx =
α

p1
;∫

+∞

−∞

[R(x; θ)]p2p(x)dx =
1− α
p2

, (46)

the maximum entropy is attained by distributions with the
densities of the form

pME(x) = exp{−λ0 − λ1[L(x; θ)]p1 − λ2[R(x; θ)]p2}

(and only by them), if constants λ0, λ1 and λ2, such that pME(x) > 0
for all x ∈ (−∞,+∞) and satisfies (46), exist. We find a unique
set {λ0, λ1, λ2} such that pME(x) is the AEPD density (6). From
the conditions in (46) and

∫
+∞

−∞
pME(x)dx = 1 straightforward

calculations show that

ασ

λ
1/p1
1

+
(1− α)σ

λ
1/p2
2

=
σ

λ
1+1/p1
1

=
σ

λ
1+1/p2
2

= exp(λ0),

implying

αλ1 + (1− α)λ2 = 1, λ
1+1/p1
1 = λ

1+1/p2
2 . (47)

This uniquely determines (λ1, λ2) = (1, 1) because λ2 as a
function of λ1 is strictly decreasing by the first equation in (47) and
increasing by the second, and thus λ0 = ln σ . �

Appendix B

Appendix B is devoted to the derivation of the information ma-
trix and to verifying the information matrix equality. Expectations
are always taken with respect to the true underlying distribution
f (y; θ0), where θ0 = (α0, p01, p02, µ0, σ0).
Suppose that yt (t = 1, 2, . . . , T ) are i.i.d. observations from

the AEPD whose density f (yt; θ)with θ ∈ Θ is defined in (6). Let

L ≡ L(yt; θ) ≡
0(1+ 1/p1) |µ− yt |

ασ
1(yt < µ),

R ≡ R(yt; θ) ≡
0(1+ 1/p2) |yt − µ|

(1− α)σ
1(yt > µ).

Then the log-density function ln f (yt; θ) = − ln σ −[L(yt; θ)]p1 −
[R(yt; θ)]p2 , and the score (vector) for observation t , ∂∂θ ln f (yt; θ),
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is given by

∂ ln f
∂α
=
p1
α
[L(yt; θ)]p1 −

p2
1− α

[R(yt; θ)]p2 , (48)

∂ ln f
∂p1
=

[
1
p1
Ψ (1+ 1/p1)− ln L(yt; θ)

]
[L(yt; θ)]p1 ,

∂ ln f
∂p2
=

[
1
p2
Ψ (1+ 1/p2)− ln R(yt; θ)

]
[R(yt; θ)]p2 ,

∂ ln f
∂µ
= −

0(1/p1)
ασ

[L(yt; θ)]p1−1 +
0(1/p2)
(1− α)σ

[R(yt; θ)]p2−1,

∂ ln f
∂σ
=
p1
σ
[L(yt; θ)]p1 +

p2
σ
[R(yt; θ)]p2 −

1
σ
,

where for x = 0 and p > 0 set xp ln x = 0.
To derive the information matrix I(θ0) ≡ E[ ∂∂θ ln f (yt , θ0)

∂
∂θ ′

ln f (yt; θ0)] and the Hessian H(θ0) ≡ E[ ∂2

∂θ∂θ ′
ln f (yt; θ0)] and to

verify the information matrix equality I(θ0) = −H(θ0), we first
give the following Lemmas.

Lemma 8. For any real number r > −1 and integer m = 0, 1, 2, we
have

E[L(yt; θ0)]r [ln L(yt; θ0)]m1(yt < µ0)

=
α0

pm+101

0(m)((1+ r)/p01)
0(1+ 1/p01)

, (49)

E[R(yt; θ0)]r [ln R(yt; θ0)]m1(yt > µ0)

=
1− α0
pm+102

0(m)((1+ r)/p02)
0(1+ 1/p02)

, (50)

where 0(m)(·) is the mth order derivative of 0(·) and 0(0)(·) means
0(·).

Proof. 8Both equalities (49) and (50) are similarly. Here we only
show (49). Denote by EL the expectation of the left hand side of
(49), then

EL =
∫ µ

−∞

[L(y; θ)]r [ln L(y; θ)]mf (y; θ)dy

=

∫ µ

−∞

[L(y; θ)]r [ln L(y; θ)]m
1
σ
exp{−[L(y; θ)]p1}dy.

Then a change of variable x = [L(y; θ)]p1 results in

EL =
α

pm+11 0(1+ 1/p1)

∫
+∞

0
x(1+r)/p1−1(ln x)m exp(−x)dx

=
α

pm+11 0(1+ 1/p1)
0(m)((1+ r)/p1),

(for derivatives of gamma function see Farrell and Ross (1963,
p 22)). �

Lemma 9. The score vector for observation t, ∂
∂θ
ln f (yt; θ), satisfies

E
[
∂

∂θ
ln f (yt; θ0)

]
= 0. (51)

8 For simplicity, we omit the subscript ‘‘0’’on the true parameters in all the
following proofs.
Proof. To verify thisweuse (49), (50) and (37)–(39) inAppendixA-
(II). Here we show E[ ∂ ln f

∂p1
] = 0; other calculations are similar. In

fact,

E
[
∂ ln f
∂p1

]
=
1
p1
Ψ (1+ 1/p1)E[L(yt; θ)]p1 − E[L(yt; θ)]p1 ln L(yt; θ)

=
1
p1
Ψ (1+ 1/p1)

α0(1+ 1/p1)
p10(1+ 1/p1)

−
α0′(1+ 1/p1)
p210(1+ 1/p1)

=
α

p21
Ψ (1+ 1/p1)−

α

p21
Ψ (1+ 1/p1) = 0. �

Proof of Proposition 5. We derive expressions for E[∂2 ln f (yt; θ)
/∂θi∂θj] and E[∂ ln f (yt; θ)/∂θi] · [∂ ln f (yt; θ)/∂θj] separately and
then verify

E
[
∂ ln f (yt; θ)

∂θi
·
∂ ln f (yt; θ)

∂θj

]
= −E

[
∂2 ln f (yt; θ)
∂θi∂θj

]
,

i, j = 1, 2, . . . , 5.

In the proof we use 1(yt < µ)1(yt > µ) = 0 and make use of
(49)–(51) and (37)–(39) in Appendix A-(II). Here we show only the
equality associated with φ44; the others are proved similarly. In
fact,

E
[
∂ ln f
∂µ

]2
=

[
0(1/p1)
ασ

]2
E[L(yt; θ)]2(p1−1)

+

[
0(1/p2)
(1− α)σ

]2
E[R(yt; θ)]2(p2−1)

=

[
0(1/p1)
ασ

]2
α0(2− 1/p1)
p10(1+ 1/p1)

+

[
0(1/p2)
(1− α)σ

]2
(1− α)0(2− 1/p2)
p20(1+ 1/p2)

=
0(1/p1)0(2− 1/p1)

ασ 2
+
0(1/p2)0(2− 1/p2)

(1− α) σ 2
;

also

−E
[
∂2 ln f
∂µ2

]
= 0

(
1
p1

)
(p1 − 1)0(1+ 1/p1)

(ασ)2
E[Lp1−2]

+0

(
1
p2

)
(p2 − 1)0(1+ 1/p2)

[(1− α)σ ]2
E[Rp2−2]

=

[
0(1/p1)
ασ

]2 p1 − 1
p1

α0(1− 1/p1)
p10(1+ 1/p1)

+

[
0(1/p2)
(1− α)σ

]2 p2 − 1
p2

(1− α)0(1− 1/p2)
p20(1+ 1/p2)

=
1
σ 2

[
0(1/p1)(1− 1/p1)0(1− 1/p1)

α

+
0(1/p2)(1− 1/p2)0(1− 1/p2)

1− α

]
=
1
σ 2

[
0(1/p1)0(2− 1/p1)

α
+
0(1/p2)0(2− 1/p2)

1− α

]
. �
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Remark 10. Note that calculation of E[∂2 ln f /∂µ2] requires pi >
1 to ensure 1 − 1/pi > 0 in the domain (0,+∞) of definition
of 0(x). If considering the Gamma function 0(z) defined on
the complex plane except z = 0,−1,−2, . . ., however, the
information matrix equality may hold for all p01 > 0 and p02 >
0 except for points 1/n (n = 2, 3, 4, . . .) of p01 and p02. We
restrict p01 and p02 to satisfy p01 > 1/2 and p02 > 1/2 since (1)
I(θ0) and H(θ0) are undefined and thus discontinuous at points
1/n (n = 2, 3, 4, . . .); and (2) the information matrix equality
has no significance for p01 and p02 in intervals ( 1

2n+1 ,
1
2n ), n =

1, 2, 3, . . . as E[ ∂ ln f
∂µ
]
2 is negative when both p01 and p02 are in

these intervals (see the expression for E[ ∂ ln f
∂µ
]
2 and properties of

the gamma function). The existence of E[∂2 ln f /∂µ2] at p01 = 1
and (or) p02 = 1 is due to the fact that x0(x)→ 1 or sin(x)/x→ 1
as x→ 0.

Appendix C

Appendix C establishes consistency and asymptotic normality
of MLE of all parameters in AEPD. The following lemma is used in
proof of Proposition 7.

Lemma 11. (a) For any ε > 0 there exists a positive constant M0,
that may depend on ε, such that

|ln x| ≤ M0
(
1+ x−ε + xε

)
, for any x > 0. (52)

(b) For any (µ∗, q∗) such that |q∗ − q| ≤ d and |µ∗ − µ| ≤ d, the
following inequalities hold:(
µ∗ − y

)q∗
≤ 2+ (µ+ d− y)q+d + (µ− d− y)q−d,

if y < µ− d; (53)

(µ∗ − y)q
∗

≤ 1+ (µ+ d− y)q+d, if q∗ > 0, y < µ− d; (54)(
y− µ∗

)q∗
≤ 2+ (y− µ+ d)q+d + (y− µ− d)q−d,

if y > µ+ d; (55)(
y− µ∗

)q∗
≤ 1+ (y− µ+ d)q+d, if q∗ > 0, y > µ+ d. (56)

(c) Suppose that Y is an AEPD r.v. with density f (y | θ0) defined
in (6), where θ0 = (α0, p01, p02, µ0, σ0). Then, for any µ ∈ R and
r > −1, the following inequality holds:

E |Y − µ|r ≤ M1(µ, r; θ0)0
(
1+ r
p01

)
+M2(µ, r; θ0)0

(
1+ r
p02

)
, (57)

where M1(·, ·; θ0) and M2(·, ·; θ0) are two positive continuous
functions.

Proof. Part (a) is immediate since for any ε > 0, xε |ln x| → 0 as
x → 0+, and |ln x| /xε → 0, as x → +∞. Part (b) is easy for the
cases of q∗ > 0 and q∗ < 0; the cases of |µ± d− y| > 1 and
|µ± d− y| < 1 are considered subsequently. Part (c) is proved
by using the cr -inequality (see Loève (1977, p 157)), |y− µ0|p ≥
21−p |y− µ|p − |µ0 − µ|p for p ≥ 1, and then change of variable.
For r > −1,

E |Y − µ|r

≤ D1(µ, θ0)
∫ µ

−∞

|y− µ|r exp
[
−21−p01C1(θ0) |y− µ|p01

]
dy

+D2(µ, θ0)
∫
+∞

µ

|y− µ|r exp
[
−21−p02C2(θ0) |y− µ|p02

]
dy
=

2∑
i=1

Mi(µ, r; θ0)
∫
+∞

0
x
1+r
p0i
−1e−xdx

=

2∑
i=1

Mi(µ, r; θ0)0
(
1+ r
p0i

)
,

where Ci(θ0), Di(µ, θ0) and Mi(µ, r; θ0) (i = 1, 2) are certain
functions depending on parameters in brackets. �

Proof of Proposition 4 (Consistency). The consistency of the MLE
θ̂T can be shown by verifying the conditions of Theorem 2.5
in Newey and McFadden (1994), which holds under conditions
that are primitive and also quite weak. Condition (ii) of Theorem
2.5, compactness of the parameter set, is ensured by considering
compact Θ . Condition (iii) requires that the log-likelihood ln f (y |
θ) be continuous at each θ ∈ Θ with probability one. This holds by
inspection. We only need to check the identification condition and
dominance condition (conditions (i) and (iv) of Theorem 2.5).
The identification condition implies that if θ 6= θ0 then Pr{f (y |

θ) 6= f (y | θ0)} > 0. It is sufficient to show that for any given
θ ∈ Θ; θ 6= θ0 there exists a set of positive probability, S(θ), such
that

ln f (y | θ) 6= ln f (y | θ0), a.e. y ∈ S(θ). (58)

The proof uses the fact that any AEPD random variable Y has
positive probability on any interval. If µ 6= µ0, say, µ > µ0, then
for y ∈ (µ0, µ] the function ln f (y | θ) is strictly increasing but
ln f (y | θ0) strictly decreases, so (58) always holds on (µ0, µ]. Now
suppose µ = µ0. We show that (58) is true almost everywhere in
(−∞, µ0] (or (µ0, +∞)) if p1 6= p01 (or p2 6= p02). Suppose p2 6=
p02. Then, for y ∈ (µ0,+∞), ln f (y | θ) = − ln σ−C2(θ)(y−µ0)p2
(since µ = µ0) and ln f (y | θ0) = − ln σ0 − C2(θ0)(y − µ0)p02 ,
where C2(θ) = (0(1+ 1/p2)/((1− α)σ))p2 . Since both functions
on (µ0,+∞) are power functions, they intersect at no more than
two points, implying that (58) holds for S(θ) = (µ0,+∞).
Similarly, for µ = µ0, p1 = p01 and p2 = p02, it is easy to show
that (58) holds if α 6= α0 or σ 6= σ0 (see Newey and McFadden
(1994, p. 2126)).
The dominance condition of Theorem 2.5, E[supθ∈Θ | ln f (Y |

θ)|] < ∞, can be verified here by the compactness of parameter
set Θ and the boundedness of the pth absolute moment of a
standard AEPD r.v., where p is the supremum of p1 and p2 in Θ .
Since the parameter set Θ is compact, any continuous function of
θ is bounded onΘ . By using the cr -inequality (see Loève (1977), p.
157), i.e., |a+ b|r ≤ cr |a|r + cr |b|r , with cr = 1 or 2r−1 as 0 < r ≤
1 or r ≥ 1, we have |ln f (Y | θ)| ≤ K1 + K2 |X |p for all θ ∈ Θ , for
K1 and K2 positive constants and X = σ0(Y −µ0), a standard AEPD
r.v. with parameters (α0, p01, p02). Since E[|X |p] < ∞ by (15) the
dominance condition is satisfied. �

Proof of Proposition 7 (Asymptotic Normality). The proof of the
asymptotic normality result proceeds by verifying the conditions
of Theorem 3 aswell as its corollary in Huber (1967). Following the
notation of Huber (1967), let ψ(y, θ) = ∂ ln f (y,θ)

∂θ
, the score vector,

and set

λ(θ) = Eψ(y, θ), u(y, θ, d) ≡ sup
θ∗∈D∗

∣∣ψ(y, θ∗)− ψ(y, θ)∣∣ , (59)

where D∗ ≡ {θ∗ | |θ∗ − θ | ≤ d} and all expectations are with
respect to the true underlying distribution f (y; θ0) with θ0 =
(α0, p01, p02, µ0, σ0). The condition N-1 (i.e., for each fixed θ ,
ψ(y, θ) is measurable and separable) in Assumption A-1 of Huber
(1967) is immediate; conditions (N-2) and (N-4): λ(θ0) = 0 and
E[|ψ(y, θ0)|2] < ∞, hold by (51) and the fact that φii in (22) are
finite. For the MLE θ̂ , we have

∑T
t=1 ψ(yt , θ̂ ) = 0; then Equation

(27) of Huber (1967) holds. Since consistency has been proved, the
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only remaining condition is the condition (N-3): there are strictly
positive numbers a, b, c, d0 such that

|λ(θ)| ≥ a |θ − θ0| , for |θ − θ0| ≤ d0, (60)
Eu(y, θ, d) ≤ bd, for |θ − θ0| + d ≤ d0, d ≥ 0, (61)

E[u(y, θ, d)2] ≤ cd, for |θ − θ0| + d ≤ d0, d ≥ 0, (62)

where |θ | denotes any norm equivalent to the Euclidean norm.
We check condition (61). Separate the location parameter from

the other parameters, τ = (α, p1, p2, σ ), i.e. θ = (τ , µ) and
θ∗ = (τ ∗, µ∗). Then

u(y, θ, d) ≤ sup
θ∗∈D∗

∣∣ψ(y, τ ∗, µ∗)− ψ(y, τ ∗, µ)∣∣
+ sup
|τ∗−τ |≤d

∣∣ψ(y, τ ∗, µ)− ψ(y, τ , µ)∣∣ . (63)

The bound in (61) is easily verified for the second part in (63),
because the location µ is fixed and ψ(y, τ , µ) as a function of τ is
smooth enough. For the first part in (63), express each element of
ψ(y, τ , µ) using (48) as:

C(τ )+
[
C11(τ ) |µ− y|q1 + C12(τ ) |µ− y|q1

× ln |µ− y|] 1(y < µ)

+
[
C21(τ ) |y− µ|q2 + C22(τ ) |y− µ|q2 ln |y− µ|

]
1(y > µ),

(64)

where (q1, q2) = (p1, p2) or (q1, q2) = (p1 − 1, p2 − 1); C(·),
Cij(·) are continuous functions of τ = (α, p1, p2, σ ), bounded on
compactΘ . We need to show

E
[
sup
θ∗∈D∗

∣∣∣(µ∗ − y)q∗11(y < µ∗)− (µ− y)q
∗
11(y < µ)

∣∣∣] ≤ bd, (65)
E
[
sup
θ∗∈D∗

∣∣∣(µ∗ − y)q∗1 ln ∣∣µ∗ − y∣∣ 1(y < µ∗)

− (µ− y)q
∗
1 ln |µ− y| 1(y < µ)

∣∣∣ ] ≤ bd. (66)

Here we show (66); condition (65) is verified similarly; the
counterparts with ‘‘1(y > µ)’’ are similar. Denoting by p the
infimum of pi in θ ∈ Θ , by the assumption pi > 1 (i = 1, 2),
we get p > 1, q∗1 ≥ p − 1 ≡ q > 0. Taking d0 < min{q/2,

1
3 } and

noting that
∣∣xq ln x∣∣ is bounded in (0, 1), (66) reduces to

E
[
sup
θ∗∈D∗

∣∣∣(µ∗ − y)q∗1 ln(µ∗ − y)− (µ− y)q∗1 ln(µ− y)∣∣∣
× 1(y < µ− 2d)

]
≤ bd. (67)

By the mean-value theorem, (52) and (53), for any (µ∗, q∗1) with∣∣q∗1 − q1∣∣ ≤ d and |µ∗ − µ| ≤ d, for y < µ− 2dwe get∣∣∣(µ∗ − y)q∗1 ln(µ∗ − y)− (µ− y)q∗1 ln(µ− y)∣∣∣
=

∣∣∣(µ̃− y)q∗1−1 {q∗1 ln(µ̃− y)+ 1}∣∣∣ ∣∣µ∗ − µ∣∣
≤ d

[
(µ̃− y)q

∗
1−1 |ln(µ̃− y)| + (µ̃− y)q

∗
1−1
]

≤ dM0(ε)
[
(µ̃− y)q

∗
1−1 + (µ̃− y)q

∗
1−1−ε + (µ̃− y)q

∗
1−1+ε

]
≤ dM0

3∑
i=1

[
2+ (µ+ d− y)q1+d−δi + (µ− d− y)q1−d−δi

]
, (68)

where µ̃ is a real number between µ and µ∗, δ1 = 1, δ2 = 1 + ε
and δ3 = 1 − ε. Note that q1 ± d − δi > −1 as long as ε < q/2,
say ε = q/4, because d ≤ d0 and q1 ≥ q. Applying (57) we get the
bound in (67) sinceΘ is compact.
To verify the condition (62), it is sufficient to show that

E
[
sup
θ∗∈D∗

∣∣∣(µ∗ − y)q∗1 ln(µ∗ − y)− (µ− y)q∗1 ln(µ− y)∣∣∣
× 1(y < µ− 2d)

]2
≤ cd. (69)

For any (µ∗, q∗1) such that
∣∣q∗1 − q1∣∣ ≤ d and |µ∗ − µ| ≤ d, we

have∣∣∣(µ∗ − y)q∗1 ln(µ∗ − y)− (µ− y)q∗1 ln(µ− y)∣∣∣
≤ M0(ε)

3∑
i=1

[
1+ (µ+ d− y)q1+d−1+δi

]
1(y < µ− 2d), (70)

using (54), δi, ε < q in (68); then q1 + d− 1+ δi > 0. Combining
(70) with (68) and using the cr -inequality (see Loève (1977, p 157))
yields[
sup
θ∗∈D∗

∣∣∣(µ∗ − y)q∗1 ln(µ∗ − y)− (µ− y)q∗1 ln(µ− y)∣∣∣]2
× 1(y < µ− 2d)

≤ dK0

{
1+

K∑
i=1

[
(µ+ d− y)ξi + (µ− d− y)ηi

]
× 1 (y < µ− 2d)

}
,

where constant K0 > 0may depend on ε, integer K is 0 < K < 28,
ξi and ηi are real numbers greater than−1when ε is small enough,
say ε = q/4. Thus, (69) follows from (57) and the assumption of
compactness of the parameter spaceΘ .
A sufficient condition for (60) to hold is that λ(θ) has

continuous (partial) derivatives in some neighborhood O(θ0, d0)
of θ0; indeed, this condition and the fact that the Hessian H(θ0)
is negative definite implies (60). Here we show that if λ4(θ) =
E [∂ ln f (y, θ)/∂µ], then ∂λ4(θ)/∂µ is continuous; the continuity
of other partial derivatives is easily proved by using Lemma 3.6 of
Newey andMcFadden (1994), the cr -inequality and (52)–(57). Note
that λ4(θ) =

A1(τ )E |µ− y|p1−1 1(y < µ)+ A2(τ )E |y− µ|p2−1 1(y > µ)

=

∫
+∞

0
a(x; θ)dx,

where a(x, θ) ≡ A1(τ )xp1−1f (µ − x; θ0) + A2(τ )xp2−1f (x +
µ; θ0), A1 and A2 are continuously differentiable functions of τ =
(α, p1, p2, σ ), bounded over the compact parameter space Θ ,
f (y; θ0) is the true AEPD density. Let d0 > 0 be small enough
that O(θ0, d0) ≡ {θ : |θ − θ0| < d0} ⊂ Θ . Then, obviously, a(x, θ)
is continuously differentiable in the neighborhood O(θ0, d0) of θ0,
a.s.; and by the cr -inequality and compactness of the parameter
spaceΘ ,

sup
|θ−θ0|<d0

∣∣∣∣∂a(x, θ)∂µ

∣∣∣∣ ≤ {B0xp−1, 0 ≤ x ≤ 1
B0x2(p−1) exp(−B1x), x > 1

where B0 and B1 are positive constants that do not depend on θ ,
p > 1 and p > 1 are, respectively, the infimum and supremum of
pi in θ ∈ Θ . From Lemma 3.6 of Newey and McFadden (1994) it
follows that λ4(θ) is continuously differentiable with respect to µ
in the neighborhood O(θ0, d0) of θ0. �
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Fig. 1. The AEPD densities for combinations of (α, p1, p2).
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